Типы галактик

Астрофизические параметры и типы галактик

Первые исследования космоса, проведенные в начале XX века, дали обильную почву для размышлений. Обнаруженные в объектив телескопа космические туманности, которых со временем насчитали более тысячи, представляли собой интереснейшие объекты во Вселенной. Длительное время эти светлые пятна на ночном небе считались скоплениями газа, входящими в структуру нашей галактики. Эдвин Хаббл в 1924 году сумел измерить расстояние до скопления звезд, туманностей и сделал сенсационное открытие: эти туманности — ни что иное, как далекие спиралевидные галактики, самостоятельно странствующие в масштабах Вселенной.

Американский астроном впервые предположил, что наша Вселенная – это множество галактик. Исследования космоса в последней четверти XX века, наблюдения, сделанные с помощью космических аппаратов и техники, включая знаменитый телескоп Хаббл, подтвердили эти предположения. Космос безграничен и наш Млечный путь — далеко не самая крупная галактика во Вселенной и к тому же не является ее центром.

Усилиями Эдвина Хаббла мир получил систематизированную классификацию галактик, делящую их на три типа:

  • спиральные;
  • эллиптические;
  • неправильные.

Эллиптические галактики и спиральные являются самыми распространенными типами. К ним относятся наша галактика Млечный Путь, а также соседняя с нами галактика Андромеда и многие другие галактики во Вселенной.

По классификации такие галактики обозначаются латинской буквой E. Все на сегодняшний день известные эллиптические галактики разделены на подгруппы E0-E7. Распределение по подгруппам осуществляется в зависимости от конфигурации: от галактик почти круглой формы (E0, E1 и E2)до сильно растянутых объектов с индексами E6 и E7. Среди эллиптических галактик встречаются карлики и настоящие гиганты, имеющие диаметры в миллионы световых лет.

К спиральным галактикам относятся два подтипа:

  • галактики, представленные в виде пересеченной спирали;
  • нормальные спирали.

Первый подтип выделяется следующими особенностями. По форме такие галактики напоминают правильную спираль, однако в центре такой спиральной галактики находится перемычка (бар), дающая начало рукавам. Такие перемычки в галактике обычно являются следствием физических центробежных процессов, делящих ядро галактики на две части. Существуют галактики с двумя ядрами, тандем которых и составляет центральный диск. Когда ядра встречаются, перемычка исчезает и галактика становится нормальной, с одним центром. Существует перемычка и в нашей галактике Млечный путь, в одном из рукавов которой находится наша Солнечная система. От Солнца к центру галактики путь по современным оценкам составляет 27 тыс. световых лет. Толщина рукава Ориона Лебедя, в котором пребывает наше Солнце и вместе с ним наша планета, составляет 700 тыс. световых лет.

В соответствии с классификацией спиральные галактики обозначаются латинскими буквами Sb. В зависимости от подгруппы, существуют и другие обозначения спиральных галактик: Dba, Sba и Sbc. Разница между подгруппами определяется длиной бара, его формой и конфигурацией рукавов.

Самый редкий тип — неправильные галактики. Эти вселенские объекты представляют собой крупные скопления звезд и туманностей, не имеющие четкой формы и структуры. В соответствии с классификацией они получили индексы Im и IO. Как правило, у структур первого типа диска нет или он слабо выражен. Нередко у таких галактик можно рассмотреть подобие рукавов. Галактики с индексами IO представляют собой хаотическое скопление звезд, облаков газа и темной материи. Яркими представителям такой группы галактик являются Большое и Малое Магелланово Облако.

Исходя из имеющейся классификации и по результатам исследований, можно с некоторой долей уверенности ответить на вопрос, сколько галактик во Вселенной и какого они типа. Больше всего во Вселенной спиральных галактик. Их более 55 % от общего количества всех вселенских объектов. Эллиптических галактик в два раза меньше — всего 22% от общего числа. Неправильных галактик, аналогичных Большому и Малому Магеллановым Облакам, во Вселенной только 5%. Одни галактики соседствуют с нами и находятся в поле зрения мощнейших телескопов. Другие находятся в самом дальнем пространстве, где преобладает темная материя и в объективе видна больше чернота бескрайнего космоса.

Перемычка

Боевой путь

График развода караула

К Кремлевской стене полыхающий символ памяти вернули в День Защитника Отечества, 23 февраля 2010 года. Многие интересуются вопросом о том, когда происходит смена караула на Красной площади. Расписание предусматривает ежедневную и ежечасную смену дежурных. Начало – восемь часов утра, завершение – восемь часов вечера.

Смотреть галерею

При необходимости в особых ситуациях развод часовых производится и внеурочно. Первый почетный караул в 1997 году: командир 1-й роты капитан В. С. Каминский, сержант М. П. Волгунов (разводящий), ефрейторы Р. В. Чернобуров, А. С. Горбашков. Последние двое заступили на дежурство 12 декабря в восемь часов утра. Большинство зрителей восхищены строевой подготовкой солдат Кремлевской роты: она всегда на высоте. Ведь это не обычная смена караула. На Красной Площади нужен особый, «кремлевский шаг». Важны отточенное владение приемами с оружием и предельно слаженные действия.

Деревянные детали

В искусстве[править | править код]

Прямой и слабоизогнутый клинки

Прямой и изогнутый клинки — зачем они и есть ли принципиальная разница?

Если не вдаваться в описание деталей изгиба клинка, баланса центра тяжести оружия, распределения массы вокруг этой точки, расположения percussion point, спекуляции о назначении елмани(расширение к концу сабельной полосы, в так называемой слабой части клинка, в верхней трети клинка от острия, — Прим.ред.) и других деталей, — принципиальная разница между использованием прямого и слабоизогнутого клинков невелика.

Особенности и преимущества прямого двулезвийного клинка с симметричной рукоятью очевидны. Это максимальная возможность для кратчайшего преодоления дистанции до цели и оптимальная форма для прямого укола. Это возможность использовать второе острое лезвие после того, как первое затупилось или выщербилось

Важно, чтобы рукоять была именно симметрична, — иначе повернуть, удержать оружие и применить второе лезвие не удастся

Преимущества изогнутого оружия — в более высокой прочности(арка крепче прямой балки), удобстве возвращения клинка после попадания в цель, а также возможности нанести укол в обход препятствиям.

Максимально изогнутые — на 30-45 градусов — клинки персидского шамшира удобнее всего применять на дистанции кулачного боя, форма оружия позволяет колоть противника под тулью шлема и подол доспеха, а главное — вокруг калкана(щита), как будто забивая боксёрские хуки и апперкоты.

На ту же тему Колоть или рубить: что выбирали кавалеристы

Для работы саблей оптимальна рукоять с плавным обратным S-образным изгибом и клювовидным навершием, которое не даёт оружию выскользнуть. Кроме того, при равных габаритах прямого и изогнутого клинков последний существенно удобнее и быстрее извлекается из ножен и вкладывается в них

Для самих фехтования и рубки это несущественно, а для ежедневного ношения очень важно

Существенной особенностью применения сабли является наличие темляка(ремень, петля, шнур или кисть на эфесе холодного оружия. — Прим.ред.). Я бы сказал более категорично — использовать одноручное рубящее оружие без темляка в конном строю практически невозможно.

Однако сходства более существенны.

(Фото: Дэвид Бензал)

Одноручными клинками наносят секущие удары с проносом и возвратом оружия в боевую позицию после замыкания круговой траектории. Техника сабельного боя en gross подобна приёмам с прямым одноручным мечом, поэтому неслучайно в английских армейских руководствах XVIII-XIX веков одними и теми же мастерами преподавались одни и те же действия для венгерской сабли и шотландского палаша. Фехтование саблей и палашом — это, как правило, использование финта, работа на опережение и парад-рипост.

Перемещение относительно видимых звезд

Описательные характеристики

Порядка 90% галактической массы представлено тёмной энергией и материей. Её природа до конца не изучена, однако в кругах учёных можно найти свидетельства того факта, что в центральной части преобладают гигантские чёрные дыры. В этом пространстве практически нет вещества. Учёные считают, что в рамках одной видимой части вселенной располагается приблизительно 100 млрд галактик.
Основные виды галактик представлены в классификации, описанной Эдвином Хабблом. В 1925 г. он выделил их следующие разновидности:

  • эллиптические;
  • спиральные;
  • линзовидные;
  • неправильной формы.

Чтобы иметь чёткую картину, что собой представляют отдельные типы галактик, стоит изучить их особенности более детально.

Галактика UGC 10288, расположена на расстоянии 100 миллионов световых лет

Эллиптические, представители этого класса имеют хорошо выраженную сферическую структуру и яркость, которая уменьшается по мере приближения к краям. Их вращение происходит крайне медленно, пылевая материя отсутствует. По внешним характеристикам все они отличны друг от друга, то же самое касается степени сжатия. На их долю приходится четверть всех галактик.

Спиральные, эти виды галактик имеют такое наименование по той причине, что внутри их дисковых элементов располагаются яркие рукава светил. Для них характерно постепенное сгущение и спиральные ветви. В составе имеется большое количество гигантских звёзд, которые провоцируют свечение туманностей. В окружении диска присутствует сфероидальное гало, в составе которого имеются старые звёзды, относящиеся ко второму поколению. Вращение представителей этих групп происходит с большими скоростями.

Линзовидные, такие типы галактик представляют собой промежуточное звено между эллиптическими и спиральными разновидностями. Они оснащены основным элементов, гало, дисками, зато спиральные рукава в них отсутствуют. На долю подобных объектов приходится 20%. В качестве базового компонента выступает линза, вокруг которой имеется слабый ореол.

Неправильные, они не относятся ни к одной из перечисленных выше групп по той простой причине, что их форма и строение им не соответствуют. Ядро у них не выражено, ветви отсутствуют. На такие группы приходится 25% всех небесных галактик, которые являются видимыми. Львиная доля таких категорий ранее относилась к спиралям или эллипсам, но по причине влияния гравитационных сил подверглась деформации.

Спиральная галактика M83

Галактики Местной группы

Название Подгруппа Тип Созвездие Примечание
Спиральные галактики
Млечный Путь Млечного Пути SBbc Все созвездия Вторая по размеру. Возможно, менее массивная, чем Андромеда.
Галактика Андромеды (M31, NGC 224) Андромеды SA(s)b Андромеда Крупнейшая по размеру. Возможно, самый массивный член группы.
Галактика Треугольника (M33, NGC 598) Треугольника SAc Треугольник
Эллиптические галактики
M110 (NGC 205) Андромеды E6p Андромеда спутник галактики Андромеды
M32 (NGC 221) Андромеды E2 Андромеда спутник галактики Андромеды
Неправильные галактики
Вольф-Ландмарк-Мелотт (WLM, DDO 221) Ir+ Кит
IC 10 KBm or Ir+ Кассиопея
Малое Магелланово Облако (SMC, NGC 292) Млечного Пути SB(s)m pec Тукан спутник галактики Млечный Путь
Карликовая галактика в Большом Псе (Canis Major Dwarf) Млечного Пути Irr Большой Пёс спутник галактики Млечный Путь
Рыбы (LGS3) Треугольника Irr Рыбы Возможный спутник галактики Треугольника (но точно входит в подгруппу Треугольника)
IC 1613 (UGC 668) IAB(s)m V Кит
Карликовая галактика в Фениксе (PGC 6830) Irr Феникс
Большое Магелланово облако (LMC) Млечного Пути Irr/SB(s)m Золотая Рыба спутник галактики Млечный Путь
Лев A (Лев III) IBm V Лев
Секстант B (UGC 5373) Ir+IV-V Секстант
NGC 3109 Ir+IV-V Гидра
Секстант A (UGCA 205) Ir+V Секстант
Карликовые эллиптические галактики
NGC 147 (DDO 3) Андромеды dE5 pec Кассиопея спутник галактики Андромеды
SagDIG (Карликовая неправильная галактика в Стрельце) IB(s)m V Стрелец Самый удалённый от центра масс Местной группы
NGC 6822 (Barnard’s Galaxy) IB(s)m IV—V Стрелец
Карликовая неправильная галактика в Пегасе (DDO 216) Irr Пегас
Карликовые сфероидальные галактики
Волопас I dSph Волопас
Кит dSph/E4 Кит
Гончие Псы I и Гончие Псы II dSph Гончие Псы
Андромеда III dE2 Андромеда спутник галактики Андромеды
NGC 185 Андромеды dE3 pec Кассиопея спутник галактики Андромеды
Андромеда I Андромеды dE3 pec Андромеда спутник галактики Андромеды
Скульптор (E351-G30) Млечного Пути dE3 Скульптор спутник галактики Млечный Путь
Андромеда V Андромеды dSph Андромеда спутник галактики Андромеды
Андромеда II Андромеды dE0 Андромеда спутник галактики Андромеды
Печь (E356-G04) Млечного Пути dSph/E2 Печь спутник галактики Млечный Путь
Карликовая галактика в Киле (E206-G220) Млечного Пути dE3 Киль спутник галактики Млечный Путь
Antlia Dwarf dE3 Насос
Лев I (DDO 74) Млечного Пути dE3 Лев спутник галактики Млечный Путь
Секстант Млечного Пути dE3 Секстант I спутник галактики Млечный Путь
Лев II (Лев B) Млечного Пути dE0 pec Лев спутник галактики Млечный Путь
Малая Медведица Млечного Пути dE4 Малая Медведица спутник галактики Млечный Путь
Карликовая галактика в Драконе (DDO 208) Млечного Пути dE0 pec Дракон спутник галактики Млечный Путь
SagDEG (Карликовая эллиптическая галактика в Стрельце) Млечного Пути dSph/E7 Стрелец спутник галактики Млечный Путь
Tucana Dwarf dE5 Тукан
Кассиопея (Андромеда VII) Андромеды dSph Кассиопея спутник галактики Андромеды
Карликовая сфероидальная галактика в Пегасе (Андромеда VI) Андромеды dSph Пегас спутник галактики Андромеды
Большая Медведица I и Большая Медведица II Млечного Пути dSph Большая Медведица спутник галактики Млечный Путь
Тип определён не точно
Поток Девы dSph (remnant)? Дева В процессе слияния с Млечным Путём
Виллман 1  ? Большая Медведица возможно, шаровое звёздное скопление
Андромеда IV Irr? Андромеда возможно, не галактика
UGC-A 86 (0355+66) Irr, dE or S0 Жираф
UGC-A 92 (EGB0427+63) Irr or S0 Жираф
Возможно не члены Местной группы
GR 8 (DDO 155) Im V Дева
IC 5152 IAB(s)m IV Индеец
NGC 55 SB(s)m Скульптор
Водолей (DDO 210) Im V Водолей
NGC 404 E0 or SA(s)0− Андромеда
NGC 1569 Irp+ III—IV Жираф
NGC 1560 (IC 2062) Sd Жираф
Жираф A Irr Жираф
Argo Dwarf Irr Киль
UKS 2318-420 (PGC 71145) Irr Журавль
UKS 2323-326 Irr Скульптор
UGC 9128 (DDO 187) Irp+ Волопас
Паломар 12 (Capricornus Dwarf) Козерог Шаровое звёздное скопление, ранее определялось как галактика
Паломар 4 (первоначально определена как карликовая галактика UMa I) Большая Медведица Шаровое звёздное скопление, ранее определялось как галактика
Секстант C Секстант

Подгруппа Андромеды

Галактика Андромеда M31 и ее спутники

Галактика Андромеды является наиболее крупным объектом местной группы галактик. Точно так же, как и Млечный путь, данный объект имеет 18-ть известных карликовых галактик-спутников, которые гравитационно связаны с ней. Наиболее известные из них М32 и М110. Эти галактики известны по той простой причине, что являются самыми яркими спутниками Туманности Андромеды с относительно небольшой, как для такого огромного расстояния, видимой звездной величиной.

Галактика Андромеды удалена от Млечного Пути примерно на 2,5 миллиона световых лет. Это ближайшая к нам галактика, которая, к сожалению, плохо поддается наблюдению, так как повернута к Земле ребром. Есть основания полагать, что гравитационные силы Туманности Андромеды, которая почти в два раза крупнее Млечного Пути, примерно через 5 миллиардов лет притянут к себе и поглотят галактику Млечный Путь, соединив ее с Андромедой.

Наш дом на космической карте

Активное образование звезд происходит как в перемычке, так и в спиральных рукавах, которыми обладает наша Галактика. Название им дали по созвездиям, где были обнаружены участки ответвлений: рукава Персея, Лебедя, Центавра, Стрельца и Ориона. Вблизи последнего (на расстоянии не менее 28 тысяч световых лет от ядра) и находится Солнечная система. Эта область обладает определенными характеристиками, по мнению специалистов, сделавшими возможным возникновение жизни на Земле.

Галактика и наша Солнечная система вместе с ней вращаются. Закономерности движения отдельных составляющих при этом не совпадают. Большое число звезд временами то входит в состав спиральных ответвлений, то отделяется от них. Лишь светила, лежащие на границе коротационной окружности, не совершают подобные «путешествия». К ним относится и Солнце, защищенное от мощных процессов, постоянно протекающих в рукавах. Даже незначительное смещение свело бы на нет все остальные преимущества для развития организмов на нашей планете.

Галактика NGC474

Галактика NGC474 Тип: Эллиптическая галактика Созвездие: Рыбы

Открыта Уильямом Гершелем в 1784 году. Многочисленные светящиеся оболочки показывают неожиданно сложную структуру этой галактики

Если Галактика южное колесо выглядит так, как должны выглядеть активные галактики, то NGC474 – как раз тот вариант, как эллиптические галактики выглядеть не должны. На снимке перед вами отнюдь не впечатление художника после прочтения научно-фантастического романа, а реально существующая галактика, которая разрывается на части приливными влияниями спиральной галактики позади нее и над ней. Однако именно из-за разреженных оболочек газа и пыли, которые придают этой галактике вид медузы, мы знаем, что многие, если не большинство известных галактик имеют вокруг себя подобные газовые оболочки. Исследователи полагают, что это – прямой результат столкновений с другими галактиками в (космологически говоря) недавнем прошлом.

Фото ЗИЛ-111

Невидимая сила

Невидимая и прожорливая: сверхмассивная чёрная дыра глазами художника

Возможно, причина постоянного голода кроется в устройстве самих галактик, обладающих огромным притяжением. Ведь каждая из них сама образуется вокруг мощнейшего источника гравитации. В центре большинства галактик находится сверхмассивная чёрная дыра — небесное тело с притяжением такой силы, что его не могут покинуть ни вещество, ни излучение. К примеру, в центре Млечного пути находится чёрная дыра, масса которой составляет от двух до пяти миллионов масс Солнца. И это ещё далеко не рекорд.

Досконально исследовать, как образуются сверхмассивные чёрные дыры, учёным ещё предстоит. Сейчас они могут лишь относительно точно определять их наличие, наблюдая за центром галактик в радио- и инфракрасном диапазонах. Однако есть признак, который явно указывает на то, что в галактике есть чёрная дыра. Это квазар.

На пути этого луча лучше не попадаться

Считается, что квазары возникают в результате слияния галактик. Сверхмассивные чёрные дыры в центрах галактик притягивают звёзды с такой алчностью, что вокруг них образуется квазар, который излучает в миллионы раз больше энергии, чем самые яркие звёзды. Эти выбросы настолько сильны, что сопровождающие их вспышки легко заметны даже в видимом спектре. Квазары испускают радиоволны, инфракрасные, ультрафиолетовые, рентгеновские и гамма-лучи невероятной силы.

Влияние чёрных дыр прослеживается и в жизнедеятельности ещё одной разновидности галактик — сейфертовских, названных по имени исследователя Карла Сейферта. Их характерный признак — активное ядро, спектр излучения которого содержит множество ярких широких полос. Эти полосы вызваны мощными выбросами газа из ядра, который движется со скоростью до нескольких тысяч километров в секунду. Сейфертовские галактики обычно бывают неправильными или спиральными.

Благодаря «выхлопам» ядра у NGC 1097 появились новые районы звездообразования

Однако чёрные дыры, квазары и блазары — не единственные составляющие галактик, которые вызывают у учёных множество вопросов. Не менее таинственной остаётся тёмная материя. О самом её существовании учёные догадались лишь из-за аномально высокой скорости, с которой вращаются периферические области галактик. Тёмная материя практически невидима, так как не испускает электромагнитное излучение и не взаимодействует с ним, зато оказывает очень сильное гравитационное воздействие, во много раз большее, чем материя видимая. К примеру, эллиптическую галактику NGC 1132 окружает огромное гало из тёмной материи, масса которого в тысячи раз больше самой галактики.

Влияние тёмной материи особенно хорошо заметно в галактических скоплениях. Это стало известно в ходе опытов с гравитационным линзированием. В основе этих опытов лежит тот факт, что любая масса деформирует пространство, искажая лучи света подобно линзе. Возникающее в скоплении галактик искажение настолько велико, что его легко заметить.

Гигантское космическое увеличительное стекло

Кроме того, без тёмной материи не могли бы образоваться галактики. Одного притяжения фрагментов материи, возникшей после Большого Взрыва, для этого бы не хватило. По большому счёту, тёмная материя различных типов составляет 95% массы Вселенной. Она удерживает вместе существующие галактические сообщества и заполняет пространство между ними.

Догнали и перегнали

Научно-исследовательские работы по «Коалиции» начались, предположительно, в середине 1990-х годов в стенах АО «ЦНИИ «Буревестник» в Нижнем Новгороде, которое входит в корпорацию «Уралвагонзавод». Первый прототип самоходки был собран с двухствольной пушкой. По задумке конструкторов, САУ должна была вести стрельбу поочерёдно из обоих стволов. Плановая скорострельность установки составляла 15–16 выстрелов в минуту.

Инициатором создания одноствольной САУ выступил заказчик – Министерство обороны. В итоге ЦНИИ «Буревестник» провёл масштабную работу по изменению конструкции «Коалиции».

Как отмечает Корнев, двухствольная установка более предпочтительна, чем одноствольный вариант.

«О подобном оружии давно мечтают все ведущие армии мира. Могу предположить, что причина изменения концепции «Коалиции» заключалась в том, что её первоначальный вариант предусматривал реализацию слишком сложных технологических решений. Доводка двустволки до серийного образца могла бы затянуться на неопределённый срок», – подчеркнул эксперт.

Широкой публике «Коалиция-СВ» в одноствольной компоновке была показана на параде Победы в Москве 9 мая 2015 года. По брусчатке Красной площади проехали 8 новейших самоходок на базе шасси танка Т-90.

Напомним, что в мае 2015 года заместитель гендиректора УВЗ по спецтехнике Вячеслав Халитов заявил в интервью «Лента.Ру», что самая перспективная артиллерийская система была у немцев (САУ Раnzerhaubitze 2000. – RT). По его словам, создав «Коалицию», российские разработчики по некоторым аспектам опередили своих западных коллег.

«Мы не просто их догнали: по многим параметрам наша система превосходит немецкую, в том числе в автоматизации процессов управления самой артиллерийской системой», – пояснил он.

«Повышены скорострельность, мощность боеприпасов и другие характеристики. Конкретных цифр назвать не могу, они пока закрыты, но по интегральным возможностям мы немецкую машину превзошли», – отметил тогда Халитов.

В апреле 2016 года замминистра обороны РФ (в настоящее время – вице-премьер) Юрий Борисов в ходе посещения предприятия «Уралтрансмаш» (тоже входит в корпорацию «Уралвагонзавод») назвал «Коалицию» уникальной артиллерийской установкой. По его словам, эта САУ представляет собой «будущее артиллерии». Подобными изделиями, подчеркнул Борисов, «в мире владеют всего две армии» (по всей видимости, речь шла о ФРГ).

Несмотря на внешнее сходство с советской САУ, «Коалиция» радикально от неё отличается. У артиллерийской самоходки необитаемая башня, как и у танка третьего поколения Т-14. Экипаж находится в бронированной капсуле и отделён от боекомплекта: в случае детонации снарядов военнослужащие не должны получить серьёзных ранений.

«Коалиция» заметно превосходит свою предшественницу и по тактико-техническим характеристикам. Максимальная дальность стрельбы составляет 70–80 км (против 24 км у немодернизированной версии «Мсты-С»), скорострельность – свыше 10 выстрелов в минуту (против 6–8), объём боекомплекта – 70 снарядов (против 50), скорость по шоссе – 90 км/ч (против 60 км/ч).

Важным отличием «Коалиции» от «Мсты-С» является автоматическая погрузка боеприпасов. Она производится с кормовой части и занимает меньше времени, чем в советской САУ, – на погрузку одного снаряда уходит не более десяти секунд.

Российские инженеры смогли повысить прочность пушки «Коалиции» за счёт использования новых сплавов в конструкции ствола. Также была изобретена новая технология охлаждения орудия: чтобы ствол не перегревался, в него впрыскивается специальная жидкость, состав которой засекречен.

Инструкция по оформлению

Магеллановы облака – не неправильные галактики!

Магеллановы облака (Большое и Малое) являются ближайшими спутниками нашей Галактики. Расположены они оба в Южном полушарии неба в созвездии Золотой Рыбы. Впервые были описаны Антонио Франческо Пигафетта — одним из участников кругосветного путешествия Магеллана, отсюда и их название.

Оба они (плюс наша Галактика) благодаря сближению образуют как бы тройную галактическую систему: друг с другом и, по-видимому, с нашей Галактикой, эти галактики связаны газовой перемычкой. Расстояния до них составляют 52 и 63 кпс соответственно. Большое Магелланово Облако имеет длину 12 кпс, а Малое – 4 кпс. Скорости их относительно центра нашей галактики составляют +40 (БМО) и -15 (ММО) км/сек. Определенная по вращению масса Большого Магелланова облака в 15 раз меньше, чем масса Млечного пути.

Большое и малое магеллановы облака на южном небе

Долгое время именно магеллановы облака считались хорошим примером “неправильной галактики”, однако в последующем, было уточнено:

  • Малое Магелланово облако представляет собой неправильную карликовую галактику I-го типа. В прошлом, вероятно, оно имело скорее всего спиральную форму, но под действием гравитации Млечного пути её потеряло.
  • Большое Магелланово облако в целом имеет такую же судьбу, как и малое, но так как оно больше по размерам, то и первоначальную форму сохранило лучше, поэтому все ещё может быть отнесена к IV-му типу спиральных галактик в последовательности Хаббла (SB(s)m).

Александр Фролов, для сайта starcatalog.ru, компиляция на основе российских и зарубежных источников сети интернет, находящихся в открытом доступе

Современное и будущее состояние галактик

Ученые считают, что составить общий потрет Вселенной невозможно. Мы располагаем визуальными и математическими данными о космосе, который находится в пределах нашего понимания. Реальные масштабы Вселенной представить невозможно. То, что мы видим в телескоп, является светом звезд, который идет к нам уже миллиарды лет. Возможно, реальная картина на сегодняшний день уже совершенно иная. Самые красивые галактики во Вселенной в результате космических катаклизмов уже могли превратиться в пустые и безобразные облака космической пыли и темной материи.

Нельзя исключать, что в далеком будущем, наша галактика столкнется с более крупной соседкой по Вселенной или проглотит карликовую галактику, существующую по соседству. Каковы будут последствия таких вселенских изменений, остается только гадать. Несмотря на то, что сближение галактик происходит со световой скоростью, земляне вряд ли станут свидетелями вселенской катастрофы. Математики подсчитали, что до рокового столкновения осталось чуть более трех миллиардов земных лет. Будет ли в то время существовать жизнь на нашей планете — вопрос.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector