Черные дыры: почему они черные, как их находят и при чем здесь квазары
Содержание:
- Откуда они вообще берутся?
- Что внутри черной дыры: догадки
- Существует несколько типов черных дыр
- Основные категории
- Строение черных дыр
- Самая большая черная дыра
- Ссылки
- Дефицит
- Связь с теорией относительности
- Страны-эксплуатанты
- Исследования и миссии — объяснение для детей
- История открытия черных дыр
- Границы черных дыр
- Что будет, если попадешь в черную дыру?
- Как образуются черные дыры в космосе
- Василий Иосифович Сталин
- Вопрос о сохранении информации
- Автомат[править]
- Свойства черных дыр
Откуда они вообще берутся?
Мы уже писали о том как образуются черные дыры (1 из вариантов) – это возможная, следующая фаза эволюции звезды. Это было предсказано общей теорией относительности Эйнштейна, которая говорит о том что когда умирает массивная звезда, от нее остается относительно небольшое и плотное ядро. Как показывает уравнение – если масса ядра более чем в 3 раза превышает массу солнца, то сила гравитации подавляет все остальные силы и создает черную дыру, вследствие критического сжатия материи.
как образуются черные дыры
Более того, во время коллапса происходит очень странная вещь, о чем описано на официальном сайте НАСА… По теории, звезда должна разрушиться вследствие сверхмощного сжатия, однако, так как ее поверхность приближается к аномальной зоне, именуемой «горизонтом событий» время замедляется, относительно времени внешнего наблюдателя, а когда звезда достигает горизонта событий, то оно вовсе останавливается и звезда уже не может разрушиться, получается замороженный коллапсирующий объект.
Кроме того, есть вероятность существования так называемых первичных черных дыр, которые были образованы во время зарождения вселенной. Гипотетически, если допустить что на начальной стадии развития вселенной были отклонения в неоднородности гравитационного поля и плотности материи, то путем гравитационного коллапса могли образовываться черные дыры. До сих пор такие объекты не были обнаружены, хотя и представляют ценность для изучения эффекта «испарения черных дыр» Стивена Хокинга.
Стивен Хокинг
В результате звездных столкновений, когда сталкиваются нейтронные звезды и черные дыры, возникает еще одна черная дыра. Такие выводы были сделаны учеными после анализа информации (мощные гамма-всплески), которая была зафиксирована телескопами Свифт и Хаббл.
Судя по количеству звезд, достаточно больших для образования черных дыр, ученые считают, что в одном только Млечном Пути насчитывается от десяти миллионов, до миллиардов черных дыр.
Еще одним из возможных механизмов образования сверхмассивных черных дыр является цепная реакция столкновений звезд в компактных звездных скоплениях, которая приводит к образованию чрезвычайно массивных звезд, которые затем разрушаются, образуя черные дыры средней массы. Звездные скопления затем опускаются в центр галактики, где черные дыры промежуточной массы сливаются, образуя сверхмассивную черную дыру.
Что внутри черной дыры: догадки
Некоторые из математиков считают, что внутри этих загадочных объектов Вселенной находятся так называемые червоточины — переходы в другие Вселенные. Иными словами, в точке сингулярности расположен пространственно-временной туннель. Эта концепция послужила источником вдохновения для многих писателей и режиссеров. Однако подавляющее большинство астрономов считают, что никаких туннелей между Вселенными не существует. Однако даже если бы они действительно были, у человека нет никаких способов узнать, что находится внутри черной дыры.
Существует и другая концепция, согласно которой в противоположном конце такого туннеля находится белая дыра, откуда из нашей Вселенной в другой мир через черные дыры поступает гигантское количество энергии. Однако на данном этапе развития науки и техники о путешествиях подобного рода не может быть и речи.
Существует несколько типов черных дыр
В зависимости от происхождения черной дыры, ее местоположения в космосе и по большей степени ее массы, ученые классифицировали их на несколько подгрупп.
Черная дыра звездной массы
Является одним из возможных этапов «жизни» звезды. Черная дыра звездной массы является самой маленькой в космическом пространстве по классификации. После полного выгорания термоядерного топлива звезда остывает, снижается ее внутреннее давление и она начинает сжиматься под действием собственной гравитации. Станет ли звезда в конечном итоге черной дырой зависит от ее массы и скорости вращения. Процесс сжатия может остановиться на определенном этапе, тогда звезда станет сверхплотной нейтронной звездой, а может наступить и стремительный гравитационный коллапс, вследствие чего она станет черной дырой.
Чтобы звезда превратилась в черную дыру, теоретически ее масса должна превышать в 3-4 раза массу нашего солнца. Однако, это лишь теория, так как необходимо знать как ведет себя вещество при чрезвычайно сильных плотностях, а это недоступно в условиях экспериментального изучения.
Данный тип значительно массивнее чем черная дыра звездной массы (от 10 до нескольких десятков масс солнца), но значительно меньше чем сверхмассивные черные дыры (от миллиона до сотен миллиардов масс солнца). Считается, что черных дыр средней массы относительно немного, если сравнивать их с меньшими или большими «собратьями». Природа происхождения черных дыр средней массы неизвестна человечеству, по одной из теорий это черные дыры звездной массы увеличившиеся до настоящих размеров за счет поглощения материи, которая входила в ее зону притяжения.
Сверхмассивные (ультрамассивные) черные дыры
Это огромные объекты даже по космическим меркам. Сверхмассивные черные дыры располагаются в центре большинства галактик, они как бы формируют ядро галактики. Сложно представить размер ультрамассивной черной дыры, но он превышает размер нашего солнца в миллионы и миллиарды раз!
В центре нашей галактики Млечный Путь также обнаружена сверхмассивная черная дыра, и называется она Стрелец A*. Масса этой ЧД по разным оценкам превышает массу солнца от 3 до 6,4 млрд раз.
Квантовые черные дыры
Существует гипотеза, что в результате ядерных реакций могут возникать устойчивые микроскопические черные дыры (квантовые черные дыры). На большом адронном коллайдере проводился эксперимент, целью которого было проверить теорию формирования квантовых черных дыр. Однако эксперимент показал, что энергии, которую выдает ускоритель недостаточно для синтеза черных дыр. В теории такие черные дыры живут мгновения и затем исчезают выбрасывая в окружающее пространство большое количество энергии.
Квантовая черная дыра – это предположение, основанное на теории квантовой физики, однако экспериментальных подтверждений ее существования пока получить не удалось.
Основные категории
Как правило, масса среднестатистических черных дыр приблизительно равна трем солнечным массам и более. Из двух видов черных дыр выделяют звездные, а также сверхмассивные. Их масса превосходит массу Солнца в несколько сотен тысяч раз. Звездные образуются после смерти больших небесных светил. Черные дыры обычной массы появляются после завершения жизненного цикла больших звезд. Оба вида черных дыр, несмотря на различное происхождение, имеют сходные свойства. Сверхмассивные черные дыры расположены в центрах галактик. Ученые предполагают, что они сформировались во времена образования галактик за счет слияния плотно прилежащих друг к другу звезд. Однако это только догадки, не подтвержденные фактами.
Строение черных дыр
Горизонтом событий называется неприступная граница черной дыры. Внутри этой границы находится зона, которую не могут покинуть даже объекты, скорость движения которых равна скорости света. Даже кванты самого света не могут покинуть горизонт событий. Находясь в этой точке, никакой предмет уже не может вырваться из черной дыры. О том, что внутри черной дыры, мы не можем узнать по определению – ведь в ее глубинах находится так называемая точка сингулярности, которая формируется за счет предельного сжатия вещества. Когда объект попадает внутрь горизонта событий, с этого момента он никогда не сможет вырваться снова из нее и стать видимым для наблюдателей. С другой стороны, те, кто находятся внутри черных дыр, не могут видеть ничего из происходящего снаружи.
Размер горизонта событий, окружающего этот загадочный космический объект, всегда прямо пропорционален массе самой дыры. Если ее масса будет удвоена, то вдвое больше станет и внешняя граница. Если бы ученые смогли найти способ, позволяющий превратить Землю в черную дыру, то размер горизонта событий составлял бы всего лишь 2 см в поперечном разрезе.
Самая большая черная дыра
Согласно теории черных дыр в центре почти всех галактик находятся огромные черные дыры с массами от нескольких миллионов до нескольких миллиардом солнечных масс. И сравнительно недавно учеными были открыты две самые большие черные дыры, известные на сегодняшний момент, они находятся в двух близлежащих галактиках: NGC 3842 и NGC 4849.
NGC 3842 – самая яркая галактика в созвездии Льва, от нас находится на расстоянии 320 миллионов световых лет. В центре нее иметься огромная черная дыра массой в 9,7 миллиарда солнечных масс.
NGC 4849 – галактика в скопление Кома, на расстоянии 335 миллионов световых лет от нас может похвалится не менее внушительной черной дырой.
Зоны действия гравитационного поля этих гигантских черных дыр, или говоря академическим языком, их горизонт событий, примерно в 5 раз больше дистанции от Солнца до Плутона! Такая черна дыра скушала бы нашу солнечную систему и даже не поперхнулась бы.
Ссылки
Дефицит
Все знают известный армейский анекдот по «крокодилов, что летают, но низко». Однако далеко не всегда эрудированы и прозорливы были военные и в прошлом. Например, генерал Драгомиров вообще считал, что Первая мировая война продлится четыре месяца. А вот французские военные и вовсе приняли концепцию «одного орудия и единого снаряда», намереваясь с ее помощью разгромить Германию в грядущей европейской войне.
Россия, шедшая в русле военной политики Франции, также отдала дань уважения этой доктрине. Зато когда война вскоре превратилась в позиционную, войска зарылись в окопы, защищенные многими рядами колючей проволоки, выяснилось, что тяжелых орудий способных действовать в этих условиях союзникам по Антанте катастрофически не хватает.
Нет, какое-то количество относительных крупнокалиберных орудий войска имели: 100-мм и 105-мм гаубицы имели Австро-Венгрия и Германия, 114-мм и 122-мм гаубицы Англия и Россия. Наконец, все воюющие страны использовали 150/152 или 155-мм гаубицы и мортиры, но даже их мощности оказалось явно недостаточно. «Землянка наша в три наката» прикрытая сверху мешками с песком защищала от любых снарядов легких гаубиц, а против более тяжелых использовали бетон.
Связь с теорией относительности
Черные дыры являются одним из самых удивительных предсказаний А. Эйнштейна. Известно, что сила тяготения, которая создается на поверхности любой планеты, обратно пропорциональна квадрату ее радиуса и прямо пропорциональна ее массе. Для этого небесного тела можно определить понятие второй космической скорости, которая необходима, чтобы преодолеть эту силу тяготения. Для Земли она равна 11 км/сек. Если же масса небесного тела будет увеличиваться, а диаметр – наоборот, уменьшаться, то вторая космическая скорость со временем может превысить скорость света. И поскольку, согласно теории относительности, никакой объект не может двигаться быстрее скорости света, то образуется объект, не дающий ничему вырваться за его пределы.
В 1963 году учеными были обнаружены квазары – космические объекты, являющиеся гигантскими источниками радиоизлучения. Располагаются они очень далеко от нашей галактики – их удаленность составляет миллиарды световых лет от Земли. Чтобы объяснить чрезвычайно высокую активность квазаров, ученые ввели гипотезу о том, что внутри них располагаются черные дыры. Эта точка зрения сейчас является общепринятой в научных кругах. Исследования, которые проводились в течение последних 50 лет, не только подтвердили данную гипотезу, но и привели ученых к выводу о том, что черные дыры есть в центре каждой галактики. В центре нашей галактики также есть такой объект, его масса составляет 4 миллиона солнечных масс. Эта черная дыра носит название «Стрелец А», и поскольку она расположена ближе всего к нам, ее больше всего исследуют астрономы.
Страны-эксплуатанты
Исследования и миссии — объяснение для детей
Изначальные исследования Нептуна могли проводить только в телескопы. С 25 августа 1989 года Вояджер 2 остался первым и единственным аппаратом, побывавшим в окрестностях планеты. Ему удалось найти кольца и 6 лун: Деспину, Галатею, Ларису, Наяду, Протей и Талассу. В 2003 году международная команда астрономов при помощи наземных телескопов отыскала еще 5.
Детям будет интересно узнать, как сформировалась планета Нептун. Сначала появилось твердое ядро, которое захватывало окружающий водород и газообразный гелий из туманности, окружавшей раннее Солнце. Если верить этой модели, то на весь процесс ушло 1-10 миллионов лет.
Планеты |
История открытия черных дыр
Впервые теоретическое существование черных дыр, еще задолго до их фактического открытия предположил некто Д. Мичел (английский священник из графства Йоркшир, на досуге увлекающийся астрономией) в далеком 1783 году. По его расчетам, если наше Солнце взять и сжать (говоря современным компьютерным языком – заархивировать) до радиуса в 3 км., образуется настолько большая (просто огромная) сила гравитации, что даже свет не сможет ее покинуть. Так и появилось понятие «черная дыра», хотя на самом деле она вовсе не черная, на наш взгляд более подходящим был бы термин «темная дыра», ведь имеет место именно отсутствие света.
Позже, в 1918 году о вопросе черных дыр в контексте теории относительности писал великий ученый Альберт Эйнштейн. Но только в 1967 году стараниями американского астрофизика Джона Уиллера понятие черных дыр окончательно завоевало место в академических кругах.
Как бы там ни было, и Д. Мичел, и Альберт Эйнштейн, и Джон Уиллер в своих работах предполагали только теоретическое существование этих загадочных небесных объектов в космическом пространстве, однако подлинное открытие черных дыр состоялось в 1971 году, именно тогда они впервые были замечены в телескоп.
Так выглядит черная дыра.
Границы черных дыр
Первая из границ черной дыры называется пределом статичности. Это граница области, попадая в которую посторонний объект уже не может находиться в состоянии покоя и начинает вращаться относительно черной дыры, чтобы удержаться от падения в нее. Вторая граница зовется горизонтом событий. Все, что внутри черной дыры, когда-то проходило ее внешнюю границу и двигалось по направлению к точке сингулярности. По мнению ученых, здесь вещество вливается в эту центральную точку, плотность которой стремится к значению бесконечности. Люди не могут знать, какие законы физики действуют внутри объектов с такой плотностью, и поэтому описать характеристики этого места невозможно. В буквальном смысле слова оно является «черной дырой» (или, быть может, «пробелом») в знаниях человечества об окружающем мире.
Что будет, если попадешь в черную дыру?
Считается, что если бы каким-либо невероятным способом человек мог попасть на поверхность черной дыры, то она сразу стала бы его затягивать в направлении себя. В конечном счете человек бы растянулся настолько, что превратился бы в поток субатомных частиц, движущихся по направлению к точке сингулярности. Доказать эту гипотезу, конечо же, невозможно, ведь ученые вряд ли когда-нибудь смогут узнать, что происходит внутри черных дыр. Сейчас некоторые физики заявляют, что если бы человек попал в черную дыру, то у него появился бы клон. Первая из его версий сразу же была бы уничтожена потоком раскаленных частиц излучения Хокинга, а вторая бы прошла через горизонт событий без возможности вернуться назад.
Как образуются черные дыры в космосе
Как мы знаем из астрофизики, все звезды (в том числе и наше Солнце) имеют некоторый ограниченный запас топлива. И хотя жизнь звезды может длиться миллиарды лет, рано или поздно этот условный запас топлива подходит к концу, и звезда «гаснет». Процесс «угасания» звезды сопровождается интенсивными термодинамическими реакциями, в ходе которых звезда проходит значительную трансформацию и в зависимости от своего размера может превратиться в белого карлика, нейтронную звезду или же черную дыру. Причем в черную дыру, обычно, превращаются самые крупные звезды, обладающие невероятно внушительными размерами – за счет сжимание этих самых невероятных размеров происходит многократное увеличение массы и силы гравитации новообразованной черной дыры, которая превращается в своеобразный галактический пылесос – поглощает все и вся вокруг себя.
Черная дыра поглощает звезду.
Маленькая ремарка – наше Солнце по галактическим меркам вовсе не является крупной звездой и после угасания, которое произойдет примерно через несколько миллиардов лет, в черную дыру, скорее всего, не превратиться.
Но будем с вами откровенны – на сегодняшний день, ученые пока еще не знают всех тонкостей образования черной дыры, несомненно, это чрезвычайно сложный астрофизический процесс, который сам по себе может длиться миллионы лет. Хотя возможно продвинуться в этом направлении могло бы обнаружение и последующее изучение так званых промежуточных черных дыр, то есть звезд, находящихся в состоянии угасания, у которых как раз происходит активный процесс формирования черной дыры. К слову, подобная звезда была обнаружена астрономами в 2014 году в рукаве спиральной галактики.
Василий Иосифович Сталин
Вопрос о сохранении информации
Одной из основных проблем, которая появилась после открытия излучения Хокинга, является проблема потери информации. Связана она с вопросом, кажущимся на первый взгляд очень простым: что произойдет, когда черная дыра испарится полностью? Обе теории – как квантовая физика, так и классическая – имеют дело с описанием состояния системы. Обладая информацией о начальном состоянии системы, при помощи теории можно описать, каким образом она будет меняться.
При этом в процессе эволюции информация о начальном состоянии не теряется – действует своего рода закон о сохранении информации. Но если черная дыра испарится полностью, то наблюдатель теряет информацию о той части физического мира, который когда-то попал в дыру. Стивен Хокинг считал, что информация о начальном состоянии системы каким-то образом восстанавливается после того, как черная дыра испарилась полностью. Но трудность состоит в том, что по определению из черной дыры передача информации невозможна – ничто не может покинуть горизонт событий.
Автомат[править]
Автома́т (от греч. αυτόματος — самодействующий, самодвижущийся — русское название применительно к оружию) — ручное индивидуальное стрелковое автоматическое оружие, предназначенное для непрерывной или комбинированной стрельбы. В других странах этот тип оружия называют автоматический карабин или штурмовой винтовкой (англ. assault rifle). Широкое распространение, наряду с пистолет-пулемётом, получил в годы Второй мировой войны (—), прийдя на смену винтовке. (В Русском языке слово «автомат» также часто использовалось по отношению к пистолетам-пулемётaм.) Первым серийным образцом такого оружия в русской армии стал автомат Федорова.
ППС-43
Предпосылками для разработки нового типа оружия под промежуточный между винтовочным и пистолетным патрон стала чрезмерная мощность винтовочного патрона:
- избыточную дальность стрельбы (пуля сохраняет убойную силу далеко за пределами прицельной дальности: практическая дальность стрельбы без оптики — 300—500 метров);
- избыточное убойное действие пули, влекущее за собой нарушение Гаагской конвенции 1907 г. в части ограничения в поражении живой силы противника на принципах разумной достаточности;
- дороговизну каждого патрона (больший расход металла и пороха);
- большая масса патрона уменьшает боекомплект, который может перенести стрелок и обеспечить подвижный пункт боепитания.
М1 Carbine- самозарядный карабин, времён Второй Мировой войны, разработанный Джоном Гарандом и Дэвидом Уильямсом. Карабин создан на базе самозарядной винтовки M1 Гаранд, но под новый промежуточный патрон 30 кал. М1.
К тому же опыт первой мировой войны показал, что очень важна скорострельность оружия — «плотность огня». Попытки создать оружие высокой скорострельности привели к созданию пистолетов-пулемётов и автоматических винтовок под патрон прежнего образца. Недостатком автоматических винтовок стала излишняя сложность механизма, (связанная с необходимостью компенсировать чрезмерно мощную отдачу винтовочного патрона), большой вес и тяжелая отдача и также скорое перегревание ствола оружия ведущее к низкой точности стрельбы. Другая ветвь развития автоматического стрелкового оружия — пистолеты-пулеметы. То есть системы, рассчитанные на использование мaлoмощного пистолетного патрона. Один из характерных представителей оружия данного типа — пистолет-пулемет А. И. Судаева ППС-43, рассчитанный под патрон 7,62Х25 ТТ
Файл:Metro-CEI-RIGOTTI.jpg «автомат» Cei-Rigotti. патрон- 6.5 x 52 Автоматика: Газовый поршень; темп стрельбы 900; Скорость пули 730 m/s: Вес 4,3 Kg
Недостатком пистолетов-пулемётов стал излишний темп стрельбы, малая эффективная дальность поражения, низкая кучность.
Поэтому перед второй мировой и в ходе её стали вестись разработки оружия под новый, промежуточный тип патрона.
Свойства черных дыр
Основное свойство черно дыры – это ее невероятные гравитационные поля, не позволяющие окружающему пространству и времени оставаться в своем привычном состоянии. Да, вы не ослышались, время внутри черной дыры протекает в разы медленнее чем обычно, и окажись вы там, то вернувшись обратно (если б вам так повезло, разумеется) с удивлением бы заметили, что на Земле прошли века, а вы даже состариться не успели. Хотя будем правдивы, окажись внутри черной дыры вы вряд ли бы выжили, так как сила гравитации там такая, что любой материальный объект просто разорвала бы даже не на части, на атомы.
А вот окажись вы даже поблизости черной дыры, в пределах действия ее гравитационного поля, то вам тоже пришлось бы не сладко, так как, чем сильнее вы бы сопротивлялись ее гравитации, пытаясь улететь подальше, тем быстрее бы упали в нее. Причинной этому казалось бы парадоксу является гравитационное вихревое поле, которым обладают все черные дыры.