Графен, его производство, свойства и применение
Содержание:
- Содержание
- The future of graphene research
- Интересные факты
- Тихая графеновая революция
- Follow us
- Ссылки
- Гидроколун своими руками
- Графен и рынок
- Координаты
- Получение в бытовых условиях
- Примечания
- Battery types and characteristics
- Who discovered graphene?
- Основное направление новой области науки
- Batteries and supercapacitors
- Battery basics
- Графен — дело тонкое
- Rate this page
- Graphene-enhanced battery products moving towards commercialization
- Как развивается цветок герберы в домашних условиях
- What exactly is graphene?
- Невидимый и прочный
- Ссылки
- Техника применения и преимущества алебарды
- БЕШМЕТ
- Вторая жизнь после войны
- Литература
- На страже здоровья или перспективы в медицине
Содержание
The future of graphene research
Given graphene’s seemingly endless list of strengths, one would expect to see it everywhere. Why, then, has graphene not been widely adopted? As with most things, it comes down to money. Graphene is still extremely expensive to produce in large quantities, limiting its use in any product that would demand mass production. Moreover, when large sheets of graphene are produced, there is an increased risk of tiny fissures and other flaws appearing in the material. No matter how incredible a scientific discovery may be, economics will always decide success.
Production issues aside, graphene research is by no means slowing down. Research laboratories the world over — including the University of Manchester, where graphene was first discovered — are continually filing patents for new methods of creating and using graphene. The European Union approved funding for a flagship program in 2013, one that will fund graphene research for use in electronics. Meanwhile, major tech companies in Asia are conducting research on graphene, including Samsung.
Revolutions don’t happen overnight. Silicon was discovered in the mid-19th century, but it took nearly a century before silicon semiconductors paved the way for the rise of computers. Might graphene, with its almost mythical qualities, be the resource that drives the next era of human history? Only time will tell.
Editors’ Recommendations
-
Moore’s law is reaching its limits. Could graphene circuits help?
-
Artificial atmospheres: How we’ll build a base with breathable air on Mars
-
Power plants on other planets: How we’ll generate electricity on Mars
-
Perfecting propulsion: How we’ll get humans to Mars
-
What happened to Mars’ water? It’s more complicated than we thought
Интересные факты
Тихая графеновая революция
«У графена очень много интересных физических свойств и явлений, например электронные свойства, которые позволяют использовать графен для конструирования сложных электронных наноустройств. Есть работы, в которых его используют для защиты наночастиц от окисления», — рассказал в беседе с RT старший научный сотрудник кафедры химической кинетики химического факультета МГУ им. М.В. Ломоносова Владимир Боченков.
Также по теме
Новые свойства графена помогут создавать топливо «из воздуха»
Исследование, проведённое физиками в Университете Манчестера, показало, что открытый в 2010 году графен может быть использован в…
Кроме того, графен поможет решить одну из главных задач современности — получить недорогие, надёжные и экологически безопасные источники энергии. Так, графеновые композиты позволяют создать более эффективные солнечные панели. Учёные из Массачусетского технологического института доказали, что при помощи графена можно сделать эластичные, дешёвые и прозрачные солнечные элементы, превращающие практически любую поверхность в источник электроэнергии. Солнечные батареи из графена, по словам учёных, могут производить энергию даже в дождь.
«В графене можно делать определённые отверстия, выбивая некоторые атомы углерода, и получать регулируемые поры, которые можно использовать в качестве мембраны в батареях и топливных ячейках. Также мембраны на основе графена могут удешевить производство тяжёлой воды. Она необходима в атомной промышленности для получения относительно экологически чистой энергии. Здесь опять же уникальные свойства графена позволяют быстрее разделять субатомные частицы, делая весь процесс очень экономичным. В результате мы получаем более зелёную и дешёвую атомную энергию», — отметил Боченков.
Крупнейшие технологические компании уже приступили к созданию литийионных аккумуляторов для смартфонов с использованием графена. Инновационная технология позволяет заряжать батарею быстрее и хранить заряд дольше.
Графен можно использовать в качестве мембраны для фильтрации атомов водорода в воздухе и получить биологически чистое топливо. К такому выводу пришли первооткрыватели графена. Андрей Гейм и Константин Новосёлов выяснили, что при высоких температурах и присутствии платины в качестве ускорителя реакции графен пропускает положительно заряженные ионы водорода (протоны) и задерживает практически всё остальное. Такая технология поможет совершить прорыв в развитии зелёной энергетики.
Также по теме
«Рассеять энергию пули»: как нанотехнологии используются в военном деле
В России и мире активно ведутся разработки в области материалов, которые позволяют создавать новые средства индивидуальной бронезащиты…
Взяли на вооружение графен и производители военной продукции. Выяснилось, что материал обладает пуленепробиваемыми свойствами. Учёные из Нью-Йоркского университета получили очень прочные и почти невесомые бронежилеты. В ходе эксперимента физики запустили стеклянную микропулю в листы графена толщиной от десяти до 100 слоёв. Графен рассеял энергию пули, летящей на скорости 3000 м/с. Однако в точке удара материал вытянулся в форме конуса, а затем треснул. Появление трещин не позволяет пока поставить графеновые бронежилеты на службу полицейским. По оценкам специалистов, чтобы защитить своих обладателей, такие бронежилеты должны состоять из миллионов слоёв графена. А для этого требуется наладить его производство в промышленных масштабах.
Проник графен и в биологию. В 2016 году китайские учёные накормили шелкопрядов тутовыми листьями, которые были сбрызнуты препаратами, содержащими графен. В итоге экспериментаторы получили прочную и хорошо проводящую электричество графеновую шёлковую нить.
Follow us
Ссылки
Гидроколун своими руками
Сделать гидравлический колун для дров не составит труда. Основная загвоздка является в его гидравлической части, схеме, способов соединения и расчете компонентов, что мы и рассмотрим.
Устройство корпуса, рабочего стола, клина и возможности транспортировки и подобные функции мы подробно рассматривать не будем, по той простой причине, что они в основном зависят от фантазии и нужд конкретного мастера. На основную задачу колуна они никак не влияют. Но ряд общих рекомендаций ниже все же приведем.
Минимум из чего может состоять самым простой гидравлический дровокол является:
- гидронасос;
- привод гидронасоса (двигатель);
- гидрораспределитель;
- гидробак;
- гидроцилиндр;
- рукава;
- соединительные элементы.
Перед тем как конструировать самодельный гидроколун нужно определиться с его мощностью, а именно, какое требуется усилие гидроцилиндра. Ошибка на данном этапе приводит к тому, что мощности привода может не хватить. Соответственно двигатель будет заклинивать на сучковатой древесине или больших поленьях.
Ознакомиться с гидравлической схемой простого дровокола можно на фото. Она включает в себя минимум компонентов
Стоит обратить внимание на наличие собственного предохранительного клапана у гидрораспределителя. Его наличие никак не поможет улучшить или упростить основную задачу приспособления, но его всегда необходимо устанавливать
Если распределитель его не имеет, то требуется установка автономного клапана в систему.
Надо хорошо понять правило обратной зависимости производительности гидросистемы от требуемой для этого мощности привода. При подобном расчете в этой схеме приходится всегда жертвовать скоростью гидроцилиндра в пользу более низкой мощности двигателя. Но не всегда такое подходит. Промышленность требует сочетать в себе и высокую скорость цикла гидроколуна и низкое потребление мощности. В этом случае поможет своеобразный тип нагрузки: большой холостой ход гидроцилиндра и короткий нагруженный режим. Здесь нужно разделить потоки к гидроцилиндру по производительности в зависимости от режима работы.
Схемы ниже как раз решают подобную задачу. В работу берутся 2 насоса с разным объемом от одного привода или сдвоенный насос с различным объемом секций. Для примера представлены насосы НШ32 и НШ10.
Холостой ход гидроцилиндра обеспечивается суммарным потоком обоих насосов, предохранительный клапан в этом случае настроен на давление, много меньшее требуемого для обеспечения рабочего цикла(раскалывания). Когда гидроцилиндр упирается в заготовку, возросшее давление в гидролинии НШ32 сбрасывается через предохранительный клапан в бак, а обратный клапан ограничивает гидролинию лишь потоком и создаваемым давлением от НШ10. На схеме как раз показана нагруженная гидролиния от НШ10. После раскалывания заготовки давление в системе резко падает и предохранительный клапан закрывается и цилиндр вновь питаеся суммарным потоком. Все это ведет к высокой производительности колуна в холостом режиме, а также к экономии мощности приводного двигателя в нагруженном режиме
Для использования решения гидравлического колуна с двумя насосами представляем более полную, рекомендуемую схему
Источник схем: https://gik43.ru/articles/drovokol_svoimi_rukami.html
Графен и рынок
Коммерческие успехи графена отстают от взрывного роста интереса к нему в науке. Тем не менее, ряд стран сделали ставку на лидерство в графеновой промышленности будущего и вложили миллиарды долларов в научные и инженерные разработки на основе графена. Прежде всего здесь следует упомянуть Китай, США, Южную Корею, Японию, Великобританию, Австралию и Сингапур, а также страны Евросоюза. В этих государствах созданы специализированные исследовательские и инжиниринговые центры, которые во многом стали драйвером для создания малых инновационных компаний, продвигающих передовые разработки на рынок, и питательной средой для таких крупных компаний, как Samsung, Huawei, Xiaomi, Airbus, Boeing, Fiat-Chrysler Automobiles, Siemens и других. Ожидается, что первыми успешными коммерческими продуктами на основе графена станут композитные материалы и функциональные покрытия, графеновые аккумуляторные батареи, печатная электроника на основе графеновых чернил, высокоскоростные фотодетекторы и высокочувствительные биосенсоры.
Первые продукты уже в продаже. Сейчас стало очевидным, что только одни высокоемкие и быстрозарядные аккумуляторные батареи на основе двумерных материалов до неузнаваемости изменят автомобильную промышленность. После 2022 года ожидается появление на рынке гибких и прозрачных солнечных батарей, суперконденсаторов, систем очистки воды, нейроинтерфейсов для обеспечения связи “компьютер-мозг” и гибких электронных устройств.
И все это — далеко не полный перечень разработок на основе графена. Интерес ученых и инженеров к двумерным материалам с каждым годом только растет. Бизнес с энтузиазмом вкладывается в технологические проекты, связанные с этими материалами, поэтому можно считать, что самое интересное нас еще ждет впереди.
Спустя 10 лет после вручения Нобелевской премии нашим соотечественникам мы уже не можем говорить только о графене, как о самом важном, самом известном и упоминаемом двумерном материале. За эти годы ученые и инженеры обнаружили сотни других двумерных материалов
Миру открылась новая вселенная, которая еще требует осмысления, и для этой вселенной нам только предстоит создать свою “таблицу Менделеева”. Нет сомнений, что мы еще увидим нобелевские премии за ван-дер-ваальсовы гетероструктуры и новые функциональные материалы.
Координаты
Убрал координаты очевидно взятые из английской статьи, поскольку не совсем понятно откуда они вообще взялись, ни одна экспедиция это место вообще никаким вниманием не удостоила. Talifero 16:04, 29 ноября 2008 (UTC)
- Вы пишете ниже в обсуждении, что этот список координат сделан по данным учёных экспедиции Кулика. Можно это-же расписать подробнее в статье? А то, правда, никаких АИ не приведено. С уважением ←A.M.Vachin 08:20, 16 сентября 2009 (UTC)
- На счет списка точных координат, я просто заменил координаты кем то взятые с английской вики, они промахнулись километров на 10, я понимаю что в масштабах Сибири ерунда но все же…. Сам список выглядит абсурдно но все данные собраны экспедицией Кулика, его составили ученые входившие в её состав. Так что выбрать какие-то одни рука не поднялась. Округлять опять же, грош цена тогда всей статье. Так можно довести до уровня справочной: Ну упал там где то. Ну поищите на карте, вы что не знаете где Сибирь? она большая не промахнетесь.—Talifero 12:06, 2 сентября 2009 (UTC)
Получение в бытовых условиях
Можно ли изготовить графен в домашних условиях? Оказывается, да! Необходимо просто взять кухонный блендер мощностью не менее 400 Вт, и следовать методике, разработанной ирландскими физиками.
Как же изготовить графен в домашних условиях? Для этого в чашу блендера выливают 500 мл воды, добавляя в жидкость 10-25 миллилитров любого моющего вещества и 20-50 грамм толченого грифеля. Далее прибор должен поработать от 10 минут до получаса, вплоть до появления взвеси из чешуек графена. Полученный материал будет обладать высокой проводимостью, что позволит использовать его в электродах фотоэлементов. Также произведенный в бытовых условиях графен способен улучшить свойства пластика.
Примечания
- ↑ , с. 6.
- ↑
- , с. 7.
- , с. 132.
- .
- ↑
- , с. 120.
- .
- .
- , с. 13—14.
- ↑ , с. 8—11.
- , с. 77—90.
Battery types and characteristics
Batteries are divided into two main types: primary and secondary. Primary batteries (disposable), are used once and rendered useless as the electrode materials in them irreversibly change during charging. Common examples are the zinc-carbon battery as well as the alkaline battery used in toys, flashlights and a multitude of portable devices. Secondary batteries (rechargeable), can be discharged and recharged multiple times as the original composition of the electrodes is able to regain functionality. Examples include lead-acid batteries used in vehicles and lithium-ion batteries used for portable electronics.
Batteries come in various shapes and sizes for countless different purposes. Different kinds of batteries display varied advantages and disadvantages. Nickel-Cadmium (NiCd) batteries are relatively low in energy density and are used where long life, high discharge rate and economical price are key. They can be found in video cameras and power tools, among other uses. NiCd batteries contain toxic metals and are environmentally unfriendly. Nickel-Metal hydride batteries have a higher energy density than NiCd ones, but also a shorter cycle-life. Applications include mobile phones and laptops. Lead-Acid batteries are heavy and play an important role in large power applications, where weight is not of the essence but economic price is. They are prevalent in uses like hospital equipment and emergency lighting.
Lithium-Ion (Li-ion) batteries are used where high-energy and minimal weight are important, but the technology is fragile and a protection circuit is required to assure safety. Applications include cell phones and various kinds of computers. Lithium Ion Polymer (Li-ion polymer) batteries are mostly found in mobile phones. They are lightweight and enjoy a slimmer form than that of Li-ion batteries. They are also usually safer and have longer lives. However, they seem to be less prevalent since Li-ion batteries are cheaper to manufacture and have higher energy density.
Who discovered graphene?
Photos: The discovery of carbon nanotubes in 1991 helped spur researchers on to
produce the first sample of graphene in 2004. Picture of aligned carbon nanotubes by Junbing Yang courtesy of Argonne National Laboratory
published on Flickr
under a Creative Commons Licence.
Scientists have been puzzling over graphene for decades. Back in 1947, Canadian physicist Philip Wallace wrote a pioneering paper about the electronic behaviour of graphite that sparked considerable interest in the field.
Nobel-Prize winning chemist Linus Pauling was speculating about how flat, single layers of carbon atoms would behave as long ago as
1960. In 1962, such materials were named «graphene» by German chemist
Hanns-Peter Boehm, who had spotted them under
his electron microscope the year before.
Theoretical research into graphene continued for the next four decades, boosted in
the 1980s and 1990s by the discoveries of fullerenes (effectively, graphene curled up into balls) and carbon nanotubes
(graphene folded into a pipe). Even so, no-one could ever actually make the stuff in practice;
graphene was only produced in a laboratory in 2004, by Russian-born
scientists
Andre Geim and
Konstantin
Novoselov working at the UK’s University of Manchester.
They made graphene by using pieces of sticky tape to pull off flakes of graphite,
then folding the tape and pulling it apart to cleave the graphite into even smaller layers.
Eventually, after a great deal of work, they were amazed to find they had some bits of
graphite only one atom thick—graphene, in other words.
Основное направление новой области науки
Нанотехнологиями называют те, которые манипулируют веществом на уровне молекул и атомов. В связи с этим данную область науки называют еще и молекулярной технологией. Что же явилось толчком к ее развитию? Нанотехнологии в современном мире появились благодаря лекции Ричарда Фейнмана. В ней ученый доказал, что не существует никаких препятствий для создания вещей непосредственно из атомов.
Средство для эффективного манипулирования мельчайшими частицами назвали ассемблером. Это молекулярная наномашина, с помощью которой можно выстроить любую структуру. Например, природным ассемблером можно назвать рибосому, синтезирующую белок в живых организмах.
Batteries and supercapacitors
While there are certain types of batteries that are able to store a large amount of energy, they are very large, heavy and release energy slowly. Capacitors, on the other hand, are able to charge and discharge quickly but hold much less energy than a battery. The use of graphene in this area, though, presents exciting new possibilities for energy storage, with high charge and discharge rates and even economical affordability. Graphene-improved performance thereby blurs the conventional line of distinction between supercapacitors and batteries.
Graphene batteries combine the advantages of both batteries and supercapacitors
Battery basics
Batteries serve as a mobile source of power, allowing electricity-operated devices to work without being directly plugged into an outlet. While many types of batteries exist, the basic concept by which they function remains similar: one or more electrochemical cells convert stored chemical energy into electrical energy. A battery is usually made of a metal or plastic casing, containing a positive terminal (an anode), a negative terminal (a cathode) and electrolytes that allow ions to move between them. A separator (a permeable polymeric membrane) creates a barrier between the anode and cathode to prevent electrical short circuits while also allowing the transport of ionic charge carriers that are needed to close the circuit during the passage of current. Finally, a collector is used to conduct the charge outside the battery, through the connected device.
When the circuit between the two terminals is completed, the battery produces electricity through a series of reactions. The anode experiences an oxidation reaction in which two or more ions from the electrolyte combine with the anode to produce a compound, releasing electrons. At the same time, the cathode goes through a reduction reaction in which the cathode substance, ions and free electrons combine into compounds. Simply put, the anode reaction produces electrons while the reaction in the cathode absorbs them and from that process electricity is produced. The battery will continue to produce electricity until electrodes run out of necessary substance for creation of reactions.
Графен — дело тонкое
— Если верить исследованиям маркетологов, в ближайшие двадцать лет мировой рынок гибкой электроники превысит 300 миллиардов долларов, — рассказывает гендиректор компании «Графенокс», старший научный сотрудник Института проблем химической физики РАН Сергей Баскаков. — В миниатюрных и гибких девайсах металлические провода исключены. Их место займут напечатанные на тонких полимерных подложках проводящие чернила. В современных чернилах для создания электропроводимости используют металлические микро- или наночастицы (серебро, медь, никель и другие). Мы заменили их частицами графена, которые имеют ряд преимуществ: они легче и дешевле, обладают гибкостью и эластичностью, не окисляются со временем. Графеновые чернила применимы для печати NFC и RFID-меток, гибких шлейфов и электрических плат. На их основе можно создавать антистатические, экранирующие и нагревательные покрытия практически на любом материале: полимерах, бумаге, тканях».
Графеновые частицы получают из природного графита, который расщепляется физико-химическими методами вплоть до одинарных слоев. Различные методы дают на выходе разный материал: частицы могут отличаться поперечными размерами (от сотен нанометров до десятков микрометров), толщиной (от одного до нескольких графеновых слоев), степенью окисления, наличию дефектов, примесей и т. д. По словам ученых, для каждого приложения нужно проводить специальную НИОКР и синтезировать графеновые частицы целевой модификации. Например, для модернизации электродов литий-ионных батарей в первую очередь нужны тонкие, хорошо проводящие частицы с большой удельной площадью поверхности. Для армирования бетонов толщина и электропроводность графеновых частиц играет меньшую роль, однако они должны быть модифицированы для лучшего сцепления внутри бетонной смеси.
Использование графенов в качестве армирующих добавок в бетонные и асфальтобетонные смеси — еще одно перспективное направление развития. Внедрение графена в бетон приводит к увеличению его прочности на 30%. На столько же возрастает и скорость набора прочности бетона, что позволяет сократить сроки строительства
— Сейчас мы сотрудничаем с несколькими технологическими стартапами, — рассказывает Максим Рыбин. — Компания «Фэском», резидент «Сколково», производит системы накопления электроэнергии на базе литий-ионных ячеек с добавками микрочастиц графена для увеличения их удельной емкости, количества циклов заряда/разряда и глубины разряда
Команда разработчиков из Электрогорска трудится над созданием смазочных материалов для велосипедов с применением присадок из графеновых частиц, которые уменьшают трение и, как следствие, увеличивают срок службы деталей и период между техосмотрами, что важно для шоссейных велогонок. Графеновые смазки успешно прошли испытание этим летом с участием ведущих российских спортсменов: команда SlowFlowTeam подтвердила эффективность применения графеновой смазки на велотреке, а Петр Винокуров, многократный призер всероссийских соревнований по скоростному спуску, одобрил использование смазки в экстремальных условиях
Вывод на рынок графеновых велосмазок запланирован на следующий год под брендом Bike Therapy.
Использование графенов в качестве армирующих добавок в бетонные и асфальтобетонные смеси — еще одно перспективное направление развития, считает Максим Рыбин. Внедрение графена в бетон приводит к увеличению его прочности на 30%. На столько же возрастает и скорость набора прочности бетона, что позволяет сократить сроки строительства. Интерес к графеновым материалам проявляют производители тепло- и электропроводящих пластиков для энергетических и климатических систем, а также компании, выпускающие антикоррозийные покрытия, добавление графенов в которые улучшает эксплуатационные характеристики на 25–30%.
— Совместно с компанией «Графенокс» мы планируем запустить производство мощностью 500 килограммов графеновых частиц в месяц к середине 2021 года, — говорит Максим Рыбин
— Уже сейчас понятно, что основными нашими клиентами будут инновационные предприятия, которым важно получить конкурентное преимущество на старте. Но для серьезного развития графеновых технологий необходимо участие крупного бизнеса
Российским графеновым компаниям и лабораториям есть чем его заинтересовать. Совместные усилия помогут сгладить кривую хайп-цикла и ускорить выход российской графеновой промышленности на «плато продуктивности».
Rate this page
Graphene-enhanced battery products moving towards commercialization
Graphene-based batteries have exciting potential and while they are not yet fully commercially available yet, R&D is intensive and will hopefully yield results in the future.
In December 2018, India-based Log 9 Materials announced that it is working on graphene-based metal-air batteries, that in theory may even lead to electric vehicles that run on water. The metal air batteries use a metal as anode, air (oxygen) as cathode and water as an electrolyte. A graphene rod is used in the air cathode of the batteries. Since Oxygen has to be used as the cathode, the cathode material has to be porous to let the air pass, a property in which graphene excels. According to Log 9 Materials, the graphene used in the electrode is able to increase the battery efficiency by five times at one-third the cost.
In November 2017, Samsung developed a unique «graphene ball» that could make lithium-ion batteries last longer and charge faster. In fact, Samsung Advanced Institute of Technology (SAIT) said that using the new graphene ball material to make batteries will increase their capacity by 45% and make their charging speed five times faster. It was also said that the Samsung battery that will use this graphene ball material will be able to maintain a temperature of 60 degrees Celsius that is required for use in electric cars.
In November 2016, Huawei unveiled a new graphene-enhanced Li-Ion battery that can remain functional at higher temperature (60° degrees as opposed to the existing 50° limit) and offers a longer operation time — double than what can be achieved with previous batteries. To achieve this breakthrough, Huawei incorporated several new technologies — including an anti-decomposition additives in the electrolyte, chemically stabilized single crystal cathodes — and graphene to facilitate heat dissipation. Huawei says that the graphene reduces the battery’s operating temperature by 5 degrees.
In June 2014, US based Vorbeck Materials announced the Vor-Power strap, a lightweight flexible power source that can be attached to any existing bag strap to enable a mobile charging station (via 2 USB and one micro USB ports). the product weighs 450 grams, provides 7,200 mAh and is probably the world’s first graphene-enhanced battery.
In May 2014, American company Angstron Materials rolled out several new graphene products. The products, said to become available roughly around the end of 2014, include a line of graphene-enhanced anode materials for Lithium-ion batteries. The battery materials were named “NANO GCA” and are supposed to result in a high capacity anode, capable of supporting hundreds of charge/discharge cycles by combining high capacity silicon with mechanically reinforcing and conductive graphene.
Developments are also made in the field of graphene batteries for electric vehicles. Henrik Fisker, who announced its new EV project that will sport a graphene-enhanced battery, unveiled in November 2016 what is hoped to be a competitor to Tesla. However, the Fisker battery was later announced to not rely on graphene.
In August 2014, Tesla suggested the development of a «new battery technology» that will almost double the capacity for their Model S electric car. It is unofficial but reasonable to assume graphene involvement in this battery.
Many other companies are also working on incorporating graphene into various kinds of batteries, for more information we recommend reading our Graphene Batteries Market Report.
Как развивается цветок герберы в домашних условиях
What exactly is graphene?
The simplest way to describe graphene is that it is a single, thin layer of graphite — the soft, flaky material used in pencil lead. Graphite is an allotrope of the element carbon, meaning it possesses the same atoms but they’re arranged in a different way, giving the material different properties. For example, both diamond and graphite are forms of carbon, yet they have wildly different natures. Diamonds are incredibly strong, while graphite is brittle. Graphene’s atoms are arranged in a hexagonal arrangement.
Graphene’s atoms are arranged in a honeycomb pattern Alex LMX / Shutterstock
Interestingly, when graphene is isolated from graphite it takes on some miraculous properties. It is a mere one-atom thick, the first two-dimensional material ever discovered. Despite this, graphene is also one of the strongest materials in the known universe. With a tensile strength of 130 GPa (gigapascals), it is more than 100 times stronger than steel.
Graphene’s incredible strength despite being so thin is already enough to make it amazing, however, its unique properties do not end there. It is also flexible, transparent, highly conductive, and seemingly impermeable to most gases and liquids. It almost seems as though there is no area in which graphene does not excel.
Невидимый и прочный
Графен состоит из плотно соединённых атомов углерода, выстроенных в решётку наподобие пчелиных сот толщиной всего в один атом. Это делает его самым тонким материалом в мире, невидимым невооружённым глазом, но при этом очень прочным и эластичным. Впервые графен выделили в 2004 году российские учёные Андрей Гейм и Константин Новосёлов, которые работали тогда в Манчестерском университете. Шесть лет спустя опыты физиков были удостоены Нобелевской премии.
С тех пор исследователи со всех уголков планеты пытались найти всё новые способы применения и, что интересно, получения графена. Ведь одним из главных факторов, мешающих наладить масштабное производство этого чудо-материала, была дороговизна «оригинального» варианта получения графена с помощью сложного процесса разложения графита. Очень быстро графен научились добывать при помощи лазера, используя в качестве сырья обычную древесину, и даже путём взрыва углеродсодержащего материала.
Пока одни учёные соревнуются, чей метод получения графена проще и дешевле, другие находят ему самое необычное применение.
Ссылки
Техника применения и преимущества алебарды
Алебарда, благодаря своей универсальности, позволяла ее владельцу атаковать врага разными способами, предоставляя ему ряд преимуществ перед нападающими. В основном алебарда использовалась для нанесения копейным острием колющих ран пехоте и кавалерии. В то же время копейное острие применялось для удержания врага на безопасном расстоянии. Односторонний топор при правильном применении мог быть очень мощным. Длина древка позволяла обрушить его с такой силой, что его лезвие могло пробить металл, во многих случаях – даже броню рыцарей.
Наконец, крюк за топором также использовался, чтобы сорвать всадников, заставляя их падать с лошадей
Во время обучения использованию алебарды особое внимание уделялось применению оружия против всадников. Солдат обучали эффективно и быстро наносить урон вражеским солдатам и лошадям. Успех использования алебарды в руке солдата зависел от трех вещей: ловкости, точности и силы
Искусный владелец, который был своего рода экспертом в использовании алебарды, становился особенно смертельным противником.
БЕШМЕТ
Вторая жизнь после войны
Второе поколение ГАЗ-62 получило новый облик, позаимствованный у американского Dodge W-52. Экстерьер напоминал нечто среднее между внедорожником и грузовиком, длина которого достигала 5 метров. Новинка была способна перевести до 1,2 тонн груза или 12 солдат. Однако этот «овцебык» в серию так и не пошел. Примечательно, что прототип модели W-52 в США выпускался вплоть до начала 90-х годов.
В 1959 году появляется третье поколение, которое наконец начинает поставляться в армию. Чуть менее года практически с нуля велась разработка бескапотного грузовика, способного буксировать батальонные орудия, а также перевозить боеприпасы и солдат. Самое интересное, что в регламенте также было прописано, что грузовик будет десантироваться с воздуха, что означало, что его габариты должны были быть уменьшены.
Внешне походивший на уже привычную «Шишигу» 62-ой получил брезентовый верх кабины и кузова. Лобовое стекло откидывалось, а в кузове могло быть размещено до 12 человек или 1,1 тонны груза. Новинка получила амортизаторы телескопического вида, главные передачи в мостах с новым гипоидным зацеплением, а также кулачковый тип межколесных блокировок, нашедший применение на ГАЗ-66.
Грузовик поставлялся в армию СССР на протяжении 4-х лет, однако в течение эксплуатации были выявлены конструктивные недостатки, которые требовали радикальных изменений, в результате которых и появилась знаменитый ГАЗ-66.
Литература
- Бердыш // Военная энциклопедия : / под ред. В. Ф. Новицкого … []. — СПб. ; [М.] : Тип. т-ва И. Д. Сытина, 1911—1915.
- Оружие // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Бехайм Вендален. Энциклопедия оружия / Пер. с нем. А. А. Девель и др. Под ред. А. Н. Кирпичникова. — СПб.: Оркестр, 1995. — 576 с.: ил. — ISBN 5-87685-029-X.
- Ефимов С. В., Рымша С. С. Оружие Западной Европы XV—XVII вв. — Том 1. Доспехи, клинковое оружие, оружие на древках. — СПб.: Атлант, 2009. — 400 с.: ил. — Серия «Оружейная академия». — ISBN 978-5-98655-022-0.
- Окшотт Эварт. Оружие и воинские доспехи Европы. С древнейших времен до конца Средневековья. — М.: ЗАО «Центрполиграф», 2009. — 704 с.: ил. — ISBN 978-5-9524-4069-2.
На страже здоровья или перспективы в медицине
Графен поможет человечеству победить рак. Он способен находить клетки опухоли в организме. Это удивительное свойство обнаружили ученые из Университета штата Иллинойс. Феномен связан с разницей электрических потенциалов здоровых и раковых клеток, которую легко определяют частицы материала.
Уверенно можно сказать, что одной из главных сфер применения графена станут различные биодатчики, кардиостимуляторы, протезы, элементы нейроинтерфейса. Например, на основе этого материала уже разработаны специальные полупрозрачные татуировки, способные показывать температуру тела и состояние кожи. Медики надеются, что в будущем подобные рисунки смогут измерять активность сердца, мозга, снимать другие важные показатели.
Возможно, что графен поможет залечивать переломы костей. Ученые из Университета Карнеги-Меллона создали на его основе биоразлагаемый материал, который привлекает стволовые клетки к месту перелома. Это значительно ускоряет процесс восстановления. Пока этот метод опробован только на мышах, так что до практического использования еще далеко.