Жизненный цикл звезды

Рождение звёзд[править | править код]

Основная статья: Формирование звёзд

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому — столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

Из-за возникших неоднородностей давление молекулярного газа больше не может препятствовать дальнейшему сжатию, и газ начинает под действием гравитационных сил притяжения собираться вокруг центров будущих звезд, в масштабе времени:
К примеру, для Солнца лет.

Вышеописанный сценарий правомерен только в случае, если молекулярное облако не вращается, однако все они в той или иной мере обладают вращательным моментом. Согласно закону сохранения импульса, по мере уменьшения размера облака растёт скорость его вращения, и в определённый момент вещество перестает вращаться как одно тело и разделяется на слои, продолжающие коллапсировать независимо друг от друга. Число и массы этих слоёв зависят от начальных массы и скорости вращения молекулярного облака. В зависимости от этих параметров формируются различные системы небесных тел: звёздные скопления, двойные звёзды, звёзды с планетами.

Зрелость[править | править код]

По прошествии определённого времени — от миллиона до десятков миллиардов лет (в зависимости от начальной массы) — звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к остановке термоядерных реакций.

Без давления, возникавшего в ходе этих реакций и уравновешивавшего внутреннюю гравитацию в теле звезды, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования. Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия.

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз. Так звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами.

То, что происходит далее также зависит от массы звезды.

Принцип работы системы

После приказа, полученного от высших звеньев управления РВСН на специальный командный пункт, происходит запуск командной ракеты 15П011 со специальной головной частью 15Б99, которая в полёте передаёт команды на пуск всем ПУ и командным пунктам РВСН, имеющим соответствующие приёмники.

На вооружении

Сербская «Рапира».

Кумулятивный выстрел к пушке.

  • Азербайджан Азербайджан — 72 МТ-12, по состоянию на 2017 год
  • Армения Армения — 36 МТ-12, по состоянию на 2016 год
  • Болгария Болгария — 126 МТ-12, по состоянию на 2016 год
  • Грузия Грузия — 40 МТ-12, по состоянию на 2017 год
  • Казахстан Казахстан — 68 T-12/МT-12, по состоянию на 2016 год
  • Киргизия Киргизия — 18 T-12/МT-12, по состоянию на 2016 год
  • Молдавия Молдавия — 37 МТ-12, по состоянию на 2016 год
  • Монголия Монголия — некоторое количество, по состоянию на 2016 год
  • Россия Россия — 526 МT-12, (2000 T-12/МT-12 на хранении), по состоянию на январь 2016 год
  • Туркмения Туркмения — 60 T-12/МT-12, по состоянию на 2016 год
  • Узбекистан Узбекистан — 36 T-12/МT-12, по состоянию на 2016 год
  • Украина Украина — не менее 500 T-12/МT-12, по состоянию на 2016 год

Бывшие операторы

  • Алжир Алжир — 10 Т-12, по состоянию на 2010 год
  • Босния и Герцеговина Босния и Герцеговина — 155 T-12/МT-12, по состоянию на 2013 год
  • Венгрия Венгрия
  • ГДР ГДР
  • Ирак Ирак
  • Польша Польша
  • СССР СССР
  • Югославия Югославия
  • Хорватия Хорватия — 133 Т-12, по состоянию на 2010 год
  • Черногория Черногория — 36 МТ-12, по состоянию на 2010 год

Финальные стадии эволюции звезд

Достигнув фазы красного гиганта, нормальная звезда под влиянием гравитационных процессов становится белым карликом. Если масса звезды примерно равна массе нашего Солнца, все основные процессы в ней будут происходить спокойно, без импульсов и взрывных реакций. Белый карлик будет умирать долго, выгорая дотла.

В случаях, когда звезда изначально имела массу больше солнечной в 1,4 раза, белый карлик не будет финальной стадией. При большой массе внутри звезды начинаются процессы уплотнения звездного вещества на атомном, молекулярном уровне. Протоны превращаются в нейтроны, плотность звезды увеличивается, а ее размеры стремительно уменьшаются.

Нейтронная звезда

В том случае, если мы имели изначально дело со звездой большой массы, финальный этап эволюции принимает другие формы. Судьба массивной звезды – черная дыра — объект с неизученной природой и непредсказуемым поведением. Огромная масса звезды способствует увеличению гравитационных сил, приводящих в движение силы сжатия. Приостановить этот процесс не представляется возможным. Плотность материи растет до тех пор, пока не превращается в бесконечность, образуя сингулярное пространство (теория относительности Эйнштейна). Радиус такой звезды в конечном итоге станет равен нулю, став черной дырой в космическом пространстве. Черных дыр было бы значительно больше, если бы в космосе большую часть пространства занимали массивные и сверхмассивные звезды.

Черная дыра

Рождение сверхновой – самая впечатляющая финальная стадия эволюции звезд. Здесь действует естественный закон природы: прекращение существование одного тела дает начало новой жизни. Период такого цикла, как рождение сверхновой, в основном касается массивных звезд. Израсходовавшиеся запасы водорода приводят к тому, что в процесс термоядерного синтеза включается гелий и углерод. В результате этой реакции давление снова растет, а в центре звезды образуется ядро железа. Под воздействием сильнейших гравитационных сил центр массы смещается в центральную часть звезды. Ядро становится настолько тяжелым, что неспособно противостоять собственной гравитации. Как следствие, начинается стремительное расширение ядра, приводящее к мгновенному взрыву. Рождение сверхновой — это взрыв, ударная волна чудовищной силы, яркая вспышка в бескрайних просторах Вселенной.

Взрыв сверхновой

Следует отметить, что наше Солнце не является массивной звездой, поэтому подобная судьба ее не грозит, не стоит бояться такого финала и нашей планете. В большинстве случаев взрывы сверхновых происходят в далеких галактиках, с чем и связано их достаточно редкое обнаружение.

Общая информация

Эволюция Звезд

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Слайды и текст этой презентации

Слайд 1

Текст слайда:

Эволюция звезд

ЭВОЛЮЦИЯ ЗВЕЗД

Слайд 2

Текст слайда:

Звезды

Вселенная состоит на 98% из звезд. Они же являются основным элементом галактики.

«Звезды – это огромные шары из гелия и водорода, а также других газов. Гравитация тянет их внутрь, а давление раскаленного газа выталкивает их наружу, создавая равновесие. Энергия звезды содержится в ее ядре, где ежесекундно гелий взаимодействует с водородом».

Слайд 3

Текст слайда:

Жизнь звезд

Жизненный путь звезд представляет собой законченный цикл – рождение, рост, период относительно спокойной активности, агония, смерть, и напоминает жизненный путь отдельного организма.

Астрономы не в состоянии проследит жизнь одной звезды от начала и до конца. Даже самые короткоживущие звёзды существуют миллионы лет – дольше жизни не только одного человека, но и всего человечества. Однако учёные могут наблюдать много звёзд, находящихся на самых разных стадиях своего развития, — только что родившиеся и умирающие. По многочисленным звездным портретам они стараются восстановить эволюционный путь каждой звезды и написать её биографию.

Слайд 4

Текст слайда:

Диаграмма

Диаграмма Герцшпрунга-Рассела

Слайд 5

Текст слайда:

Области звездообразования

Области звездообразования.

Гигантские молекулярные облака с массами, большими 105 массы Солнца (их известно более 6 000 в Галактике)

Туманность Орел

в 6000 световых лет от нас молодое рассеянное звёздное скопление в созвездии Змеи тёмные области в туманности — это протозвёзды

Слайд 6

Текст слайда:

Туманность Ориона

Туманность Ориона

светящаяся эмиссионная туманность с зеленоватым оттенком и находится ниже Пояса Ориона можно видеть даже невооружённым глазом в 1300 световых лет от нас, а величиной в 33 световых года

Слайд 7

Текст слайда:

Гравитационное сжатие

Гравитационное сжатие

Сжатие — следствие гравитационной неустойчивости, идея Ньютона. Позже Джинс определил минимальные размеры облаков, в которых может начаться самопроизвольное сжатие.

Имеет место достаточно эффективное охлаждение среды: высвобождающаяся энергия гравитации идет на излучение инфракрасного диапазона, уходящее в космическое пространство.

Слайд 8

Текст слайда:

Протозвезда

Протозвезда

При увеличении плотности облака оно становится непрозрачным для излучения. Начинается повышение температуры внутренних областей. Температура в недрах протозвезды достигает порога термоядерных реакций синтеза. Сжатие на какое-то время прекращается.

Слайд 9

Текст слайда:

Стационарное состояние

молодая звезда пришла на главную последовательность диаграммы Г-Р начался процесс выгорания водорода — основного звездного ядерного топлива сжатие практически не происходит, и запасы энергии больше не изменяются медленное изменение химического состава в ее центральных областях, обусловленное превращением водорода в гелий

Звезда переходит в стационарное состояние

Слайд 10

Текст слайда:

График эволюции

График эволюции типичной звезды

Слайд 11

Текст слайда:

Гиганты и сверхгиганты

когда водород полностью выгорает, звезда уходит с главной последовательности в область гигантов или при больших массах — сверхгигантов

Гиганты и сверхгиганты

Слайд 12

Текст слайда:

Гравитационное сжатие

масса звезды электроны обобществляются, образуя вырожденный электронный газ гравитационное сжатие останавливается плотность становится до нескольких тонн в см3 еще сохраняет Т=10^4 К постепенно остывает и медленно сжимается(миллионы лет) окончательно остывают и превращаются в ЧЕРНЫХ КАРЛИКОВ

Когда все ядерное топливо выгорело, начинается процесс гравитационного сжатия.

Слайд 13

Текст слайда:

Карлики

Белый карлик в облаке межзвездной пыли

Два молодых черных карлика в созвездии Тельца

Слайд 14

Текст слайда:

Масса звезды

масса звезды > 1,4 массы Солнца: силы гравитационного сжатия очень велики плотность вещества достигает миллиона тонн в см3 выделяется огромная энергия – 10^45 Дж температура – 10^11 К взрыв Сверхновой звезды большая часть звезды выбрасывается в космическое пространство со скоростью 1000-5000 км/с потоки нейтрино охлаждают ядро звезды — Нейтронная звезда

Слайд 15

Текст слайда:

Крабовидная туманность

Крабовидная туманность

Слайд 16

Текст слайда:

Взрыв

Взрыв сверхновой

Слайд 17

Текст слайда:

Размер

Слайд 18

Текст слайда:

Остаток

Слайд 19

Текст слайда:

Черная дыра

масса звезды > 2,5 массы Солнца гравитационный коллапс звезда превращается в Черную дыру

Слайд 20

Текст слайда:

Свечение

Слайд 21

Текст слайда:

Фотография

Литература[ | код]

Звезды-гиганты и звезды-карлики

Звезды больших размеров являются самыми горячими и яркими. На вид они обычно белые или голубоватого оттенка. Несмотря на то что они обладают гигантскими размерами, топливо внутри них сгорает настолько быстро, что они лишаются его за каких-то несколько миллионов лет.

Звезды небольших размеров, в противоположность гигантским, обычно не столь яркие. Они обладают красным цветом, живут достаточно долго – в течение миллиардов лет. Но среди ярких звезд на небосклоне есть также красные и оранжевые. Примером может послужить звезда Альдебаран – так называемый «глаз быка», находящийся в созвездии Тельца; а также звезда Антарес в созвездии Скорпиона. Почему же эти холодные звезды способны конкурировать по яркости с раскаленными звездами, наподобие Сириуса?

Так происходит из-за того, что когда-то они очень сильно расширились, и по своему диаметру стали превосходить огромные красные звезды (сверхгиганты). Огромная площадь позволяет этим звездам излучать на порядок больше энергии, чем Солнце. И это несмотря на тот факт, что их температура намного ниже. К примеру, диаметр Бетельгейзе, находящейся в созвездии Ориона, в несколько сотен раз больше диаметра Солнца. А диаметр обыкновенных красных звезд обычно не составляет и десятой части размера Солнца. Такие звезды называют карликами. Эти виды жизненного цикла звезд может проходить каждое небесное светило – одна и та же звезда на разных отрезках своей жизни может быть и красным гигантом, и карликом.

Как правило, светила, подобные Солнцу, поддерживают свое существование за счет находящегося внутри водорода. Он превращается в гелий внутри ядерной сердцевины звезды. Солнце располагает огромным количеством топлива, однако даже оно не бесконечно – за последние пять миллиардов лет была израсходована половина запаса.

Стадии эволюции звезд

Судьба светила в находится в зависимости от исходной массы звезды и ее химического состава. Пока в ядре сосредоточены основные запасы водорода, звезда пребывает в так называемой главной последовательности. Как только наметилась тенденция на увеличение размеров звезды, значит, иссяк основной источник для термоядерного синтеза. Начался длительный финальный путь трансформации небесного тела.

Эволюция нормальных звезд

Образовавшиеся во Вселенной светила изначально делятся на три самых распространенных типа:

  • нормальные звезды (желтые карлики);
  • звезды-карлики;
  • звезды-гиганты.

Звезды с малой массой (карлики) медленно сжигают запасы водорода и проживают свою жизнь достаточно спокойно.

Таких звезд большинство во Вселенной и к ним относится наша звезда – желтый карлик. С наступлением старости желтый карлик становится красным гигантом или сверхгигантом.

Процесс образования нейтронной звезды

Исходя из теории происхождения звезд, процесс формирования звезд во Вселенной не закончился. Самые яркие звезды в нашей галактике являются не только самыми крупными, в сравнении с Солнцем, но и самыми молодыми. Астрофизики и астрономы называют такие звезды голубыми сверхгигантами. В конце концов, их ожидает одна и та же участь, которую переживают триллионы других звезд. Сначала стремительное рождение, блистательная и ярая жизнь, после которой наступает период медленного затухания. Звезды такого размера, как Солнце, имеют продолжительный жизненный цикл, находясь в главной последовательности (в средней ее части).

Главная последовательность

Используя данные о массе звезды, можно предположить ее эволюционный путь развития. Наглядная иллюстрация данной теории — эволюция нашей звезды. Ничто не бывает вечным. В результате термоядерного синтеза водород превращается в гелий, следовательно, его первоначальные запасы расходуются и уменьшаются. Когда-то, очень не скоро, эти запасы закончатся. Судя по тому, что наше Солнце продолжает светить уже более 5 млрд. лет, не меняясь в своих размерах, зрелый возраст звезды еще может продлиться примерно такой же период.

Красный гигант

Запасов водорода и гелия в этой части звезды хватит еще на миллионы лет. Еще очень нескоро истощение запасов водорода приведет к увеличению интенсивность излучения, к увеличению размеров оболочки и размеров самой звезды. Как следствие, наше Солнце станет очень большим. Если представить эту картину через десятки миллиардов лет, то вместо ослепительного яркого диска на небе будет висеть жаркий красный диск гигантских размеров. Красные гиганты — это естественная фаза эволюции звезды, ее переходное состояние в разряд переменных звезд.

А также

Эволюция звезд различной массы

Стоит отметить, что звездные тела имеют разные характеристики.

Низкая масса

Если начальная масса светила меньше 0.08 солнечной массы, то в недрах таких звезд не возникнет сгорание водорода. Проще говоря, в них отсутствует ядерный синтез, а энергия вырабатывается благодаря сжатию ядра. Примером подобных светил являются коричневые карлики. Их конечный этап — превращение в чёрный карлик, то есть остывшую звезду, которая не выделяет энергию.

К сожалению, такая же участь уготовлена красным карликам с подобной массой. Но в отличие от коричневых собратьев, внутри них происходит горение водорода. Правда, в слоевом источнике в районе гелиевого ядра водород уже не горит. В результате светило сжимается и нагревается. Затем наступает последний этап эволюции красного карлика малой массы — вырожденный гелиевый карлик. В это время практически всё звёздное тело состоит из гелия с водородной оболочкой, а равновесие удерживается вырожденным электронным газом.

Белый карлик

Средняя масса

Как оказалось, звёздная эволюция при средней массе тела проходит по следующему пути.Для светил с массой от 0.5 до 8 солнечных масс путь один — это превращение в углеродно-кислородный белый карлик, который будет состоять из вырожденного газа.

Когда у звёзд с данными значениями массы в ядре заканчивается водород (он же сжигается, как мы помним), начинается его горение в слоевом источнике вокруг гелиевого ядра. В результате светило эволюционирует в стадию красного гиганта.

Красный гигант

Правда, процесс перевоплощения немного отличается при определенном весе. Так, если весовой показатель звезды находится в пределах от 0.5 до 3 солнечных масс, то в её ядре гелий взорвётся. Потому как в нём располагается вырожденный газ, произойдёт так называемая гелиевая вспышка.

Массивные звезды

А вот для светил с большей массой (от 3 до 8 солнечных) гелий будет гореть, но не взорвется. Поскольку газ не успевает выродиться из-за постоянной высокой ядерной температуры. Вместе с гелиевым сгоранием начинается рост конвективного ядра (то есть области, где происходит перенос энергии путём перемешивания веществ), а вокруг него горит оболочка из водорода. Что также приводит к превращению звезды в красный гигант.

Конвективная зона

Ведущие планеты каждого года в стадии жизненного цикла человека

  • Первый год цикла проходит под влиянием Марса. Планета энергетически сильная, дает человеку выносливость, возможность развиваться физически. Способствует оздоровлению организма, помогает бороться с болезнями. Однако может случиться, что физических сил прибавляется, а интеллектуальное развитие ослабевает. Кроме того, в первый год жизненного цикла человека может ощущаться чрезмерная агрессивность, нежелание идти на уступки. А отсюда и конфликтность, и поступки, о которых позже придется пожалеть.
  • Второй год цикла проходит под влиянием Сатурна. Довольно холодный период в жизненном цикле человека, время спокойствия, переосмысления полученного опыта. Это не всегда бывает просто, ведь опыт нередко рождается из совершенных ошибок. Хотя ошибки имеются в виду не глобальные, они не приводят к кризисным ситуациям, потому что Сатурн помогает дать событиям правильную осмысленную оценку и сделать верные выводы.
  • Третий год цикла проходит под влиянием Меркурия. Вот теперь на первое место выходит интеллект. Человек готов максимально эффективно применить накопленные знания. Это отличное время для учебы, все новое дается легко, причем имеются в виду не только интеллектуальное, но и профессиональное развитие, совершенствование навыков общения, рост энергичности и практичности. Однако случается, что активное общение нацелено лишь на получение выгоды, а это непременно вредит дружеским отношениям или взаимопониманию в семье.
  • Четвертый год цикла проходит под влиянием Солнца. Самое время задуматься, разобраться в своих личностных стремлениях, ведь именно они станут ориентиром на ближайшие семь лет. Четвертый год в жизненном цикле человека – это период осмысления своего отношения к окружающим вас людям, поступкам, это время осознания собственных ошибок и понимания, что в жизни действительно главное и какова в этом мире именно ваша роль.
  • Пятый год цикла проходит под влиянием Юпитера. Время психологического взросления. Ум требует работы, в то время как физическая активность становится слабее. Чего следует постараться избежать в этот год? Неверных философских выводов в вопросах осмысления собственной жизни.
  • Шестой год цикла проходит под влиянием Луны. Пожалуй, наиболее чувственный период жизненного цикла человека. В это время люди не спешат использовать интеллект, чтобы разобраться в тех или иных жизненных вопросах, а обращаются к интуиции, к экстрасенсорному восприятию мира.
  • Седьмой год цикла проходит под влиянием Венеры. Полный жизненный цикл развития человека завершается годом высокой эмоциональности, которая непременно влечет за собой раскрытие творческих способностей. Кто-то проявится в сфере искусства, а кто-то встретит любовь всей своей жизни. А другие, наоборот, разочаруются либо в себе, либо в своей второй половинке.

Выделяют двенадцать семилетних циклов, по количеству знаков Зодиака. Над каждым циклом властвует определенная планета

Очень важно, какая именно планета оказалась у человека в гороскопе рождения. Если она влиятельная и при этом добрая, то и семилетний цикл выдается достаточно легкий, без серьезных кризисов и испытаний

Эра дегенерации

Следом идет эра дегенерации (вырождения), которая начнется примерно через 1 квинтиллион лет после Большого Взрыва и продлится до 1 дуодециллиона после него. В этой период во Вселенной будут доминировать все видимые сегодня остатки звезд. На самом деле на космических просторах полно тусклых источников света: белые карлики, коричневые карлики и нейтронные звезды. Эти звезды гораздо холоднее и излучают меньше света. Таким образом, в эпоху дегенерации Вселенная будет лишена света в видимом спектре.

]]>

]]>

Тусклые остатки когда-то ярких звезд будут преобладать во Вселенной в эру дегенерации

В течение этой эры маленькие коричневые карлики будут удерживать большую часть доступного водорода, а черные дыры будут расти, расти и расти, питаясь остатками звезд. Когда водорода вокруг будет не достаточно, Вселенная со временем станет тусклее и холоднее. Затем протоны, существовавшие с самого начала Вселенной, начнут погибать, растворяя материю. В результате во Вселенной в основном останутся субатомные частицы, излучение Хокинга и черные дыры.

Исторический путь легионов

Время жизни звезд. Жизненный цикл звезд

После того как внутри звезды исчерпываются запасы водорода, приходят серьезные перемены. Остатки водорода начинают сгорать не внутри ее ядра, а на поверхности. При этом все больше сокращается время жизни звезды. Цикл звезд, по крайней мере, большинства из них, на этом отрезке переходит в стадию красного гиганта. Размер звезды становится больше, а ее температура – напротив, меньше. Так появляется большинство красных гигантов, а также сверхгигантов. Этот процесс входит в состав общей последовательности происходящих со звездами изменений, которые ученые назвали эволюцией звезд. Цикл жизни звезды включает все ее стадии: в конечном счете все звезды стареют и умирают, а продолжительность их существования напрямую определяется количеством топлива. Большие звезды заканчивают свою жизнь огромным, эффектным взрывом. Более скромные, наоборот, погибают, постепенно сжимаясь до размеров белых карликов. Затем они просто угасают.

Сколько по времени живет средняя звезда? Жизненный цикл звезды может длиться от менее 1,5 млн лет и до 1 млрд лет и более. Все это, как было сказано, зависит от ее состава и размеров. Звезды, подобные Солнцу, живут от 10 до 16 млрд лет. Очень яркие звезды, наподобие Сириуса, живут относительно недолго – всего лишь несколько сотен миллионов лет. Схема жизненного цикла звезды включает в себя следующие этапы. Это молекулярное облако – гравитационный коллапс облака – рождение сверхновой звезды – эволюция протозвезды – окончание протозвездной фазы. Затем следуют этапы: начало стадии молодой звезды – середина жизни – зрелость – стадия красного гиганта – планетарная туманность – этап белого карлика. Последние две фазы свойственны звездам малого размера.

Термоядерный синтез в недрах звёзд

К 1939 году было установлено, что источником звёздной энергии является происходящий в недрах звёзд термоядерный синтез. Большинство звёзд испускают излучение потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным, или p-p-циклом, и углеродно-азотным, или CN-циклом. В маломассивных звёздах энерговыделение, в основном, обеспечивается первым циклом, в тяжёлых — вторым. Запас ядерного топлива в звезде ограничен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, а также с излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции.

Ссылки

Обозначения

Пульсары и нейтронные звезды

Когда жизнь звезды заканчивается, на ее месте образуется уникальное космическое тело – нейтронная звезда. Это компактные астрономические объекты, радиус которых не превышает 10 километров. А масса нейтронной звезды составляет около 1,4 массы Солнца. Состоят такие объекты в основном из нейтронов. Эти звезды относятся к самым интересным астрофизическим объектам.

Вещество, из которого состоят эти тела, имеет сверхпроводимость, сверхтекучесть, излучение нейтрино, наличие сверхсильных магнитных полей и прочее. Просто огромна и плотность нейтронной звезды. Именно поэтому она при небольших размерах имеет невероятную массу. Строение нейтронной звезды ни на что не похоже. Внутри нее кипит раскаленное вещество, заключенное в тонкую твердую оболочку, над которой бушует горячая плазма. Это тело имеет магнитное поле, которое превосходит солнечное в триллионы раз.

То, что во Вселенной могут существовать макрообъекты, состоящие в основном  из нейтронов, доказал еще академик Л.Д.Ландау. Предположение о том, что нейтронные звезды рождаются во вспышках сверхновых, было сделано в 1934 году американскими учеными Ф. Цвикки и В.Бааде. Но, учитывая их небольшую светимость, обнаружить нейтронные звезды длительное время не удавалось. Такие тела имеют и другое название – пульсары. Их магнитные поля постоянно захватывают электроны из слоя плазмы, которые в результате начинают излучать радиосигналы.

Впервые такие радиоимпульсы были пойманы из определенных участков неба английскими учеными из Кембриджа в 1967 году. В ходе изучения мерцаний космических радиоисточников Д.Белл, работавшая под руководством Э.Хьюшина (первооткрыватель пульсаров, Лауреат Нобелевской премии в области физики за 1974 год), обнаружила строго периодический сигнал. Тогда некоторые исследователи решили, что имеют дело с сигналами внеземной цивилизации. Поэтому работы в данном направлении были засекречены. В дальнейшем было доказано, что это обычное природное явление.

Данные, полученные группой Хьюшина, стали известны другим ученым. И скоро исследователи пришли к выводу, что радиопульсары и нейтронные звезды обозначают одно и то же понятие. Самое интересное, что нейтронные звезды ученые наблюдали еще за пять лет до открытия радиопульсаторов. Вот только сделать это помогли не радиоволны, а рентгеновские лучи.

В 1962 году ученые установили на ракете специальный детектор и с его помощью смогли обнаружить достаточно мощный источник рентгеновского излучения в созвездии Скорпиона. С Земли подобные исследования провести не удавалось, поскольку рентгеновские лучи поглощаются нашей атмосферой.

 В 1970 году специалистам был известен уже целый ряд подобных объектов. Причем все они входили в состав двойных тесных систем и забирали себе часть вещества нейтронной звезды, которая находилась по соседству. В этом случае вещество приобретает скорость, близкую к скорости света, и при столкновении с поверхностью нейтронной звезды переходит в тепло (температура достигает нескольких миллионов градусов), которое и излучается в рентгеновском диапазоне.

Современной науке известны интересные тесные двойные системы, состоящие из двух нейтронных звезд. За счет гравитационных волн они довольно быстро сближаются.

В итоге за время, меньше возраста Вселенной, они должны слиться, выделив при этом колоссальное количество энергии, намного превосходящее энергию взрыва сверхновой звезды. За одной из таких систем и наблюдали в 1970 году Р. Халс и Жд.Тейлор, которые за результатами своей работы были удостоены Нобелевской премии в области физики.

Столкновение двух нейтронных звезд 

Важнейшие закономерности в мире звезд

Мы видели, что существуют и одиночные, и двойные, и кратные звезды, переменные звезды различных типов, новые и сверхновые, сверхгиганты и карлики, звезды разнообразнейших размеров, светимостей, температур и плотностей. Но образуют ли они хаос физических характеристик? Оказывается, что нет. Обобщая полученные данные о звездах, установили ряд закономерностей между ними.

  1. Сопоставляя известные массы и светимости звезд, можно убедиться, что с увеличением массы быстро растет светимость звезд: L = m3.9. По этой так называемой зависимости «масса — светимость» можно определить массу одиночной звезды, зная ее светимость (белые карлики этой зависимости не подчиняются). Для наиболее распространенных типов звезд справедлива формула L = R5.2, где R — радиус звезды. Во всех случаях берется полная светимость. Эти формулы показывают, что входящие в них физические характеристики звезд взаимосвязаны.
  2. Исключительно большой интерес представляет сопоставление светимости звезд с их температурой и цветом. Эта зависимость представлена на диаграмме «цвет — светимость» (Ц—С) (диаграмма Герцшпрунга — Рессела, рис. 88). На этой диаграмме по оси ординат откладывают логарифмы светимостей или абсолютные звездные величины М, а по оси абсцисс — спектральные классы, или соответствующие им логарифмы температур, или величину, характеризующую цвет. Точки, соответствующие звездам с известными характеристиками, располагаются на диаграмме не хаотично, а вдоль некоторых линий — последовательностей. Большинство звезд располагаются вдоль наклонной линии, идущей слева сверху вправо вниз. В этом направлении уменьшаются одновременно светимости, радиусы и температуры звезд. Это главная последовательность. На ней» крестиком отмечено положение Солнца как звезды — желтого карлика. Параллельно главной последовательности располагается последовательность субкарликов, которые на одну звездную величину слабее звезд главной последовательности с такой же температурой.

    Рис. 88. Диаграмма «цвет — светимость» (Ц — С) для звезд

    Вверху параллельно оси абсцисс расположены самые яркие звезды — последовательность сверхгигантов. У них цвет и температура различны, а светимость почти одинакова.

    От середины главной последовательности вправо вверх отходит последовательность красных гигантов. Наконец, внизу располагаются белые карлики с различными температурами. Бело-голубую последовательность составляют звезды, вспыхивающие как новые, и другие типы горячих звезд, смыкающихся на диаграмме «цвет — светимость» с белыми карликами.

    Эта диаграмма показывает нам связь основных физических характеристик звезд. Заметим, что принадлежность звезды к той или иной последовательности можно распознать по некоторым деталям в ее спектре (§ 23).

  3. Мы видим, что в природе не существует произвольных комбинаций массы, светимости, температуры и радиуса. Теория показывает, что место звезды на диаграмме Ц—С определяется прежде всего ее массой и возрастом, следовательно, диаграмма отражает эволюцию звезд. Важным завоеванием науки является выяснение связи между принадлежностью звезд к той или иной последовательности и их расположением в пространстве. Плоская часть больших звездных систем (галактик) состоит из звезд главной последовательности, спиральные ветви в них включают горячие сверхгиганты и цефеиды, а субкарлики и гиганты образуют в галактиках сферическую систему. Это отражает различия условий и времени образования звезд.

Сверхгигантов и белых карликов везде очень мало. Звезд же главной последовательности тем больше, чем меньше их светимость.

  1. По данным таблицы IV приложения вычислите абсолютные величины и светимости некоторых звезд. Нанесите звезды по этим данным на диаграмму Ц—С (рис. 88).
  2. Оцените массы тех же звезд по их светимости.

См. также

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector