Механизация крыла самолета: описание, принцип работы и устройство
Содержание:
- Содержание
- Командные флаги
- Как устроен самолет
- Curtiss-Wright VZ-7
- Как выглядит полет с точки зрения физики
- Железнодорожные транспортеры (колея 1520 мм)
- Фургон ГАЗ-2752 Соболь 4х4 Фото Характеристики Размеры
- Истребители
- Принцип работы
- Вертолеты Як.
- В чем вы видите основную проблему ВКО РФ?
- Многообразие
- Льготы семье
- Классификация воздушных судов
- Механизация крыла самолета
- Так рождалась легенда
- Шпангоуты
- Операторы
- Немного истории
- Принцип работы
- Шаг 2. Планирование времени
- Примечания
- Как производят реактивные двигатели для моделей самолетов?
- [править] Источники
- Самолеты, выполненные по схеме бесхвостка
- Что вам понадобится
- Таможенные ограничения
- Советские пассажирские самолеты
- Литература
- Каталог вооружения
- Права и обязанности
- «Прорывные решения»
Содержание
Командные флаги
Как устроен самолет
Вот как называются части самолета:
- фюзеляж;
- крылья;
- хвостовое оперение;
- шасси;
- двигатели;
- авионика.
Устройство самолета.
Это несущая часть воздушного судна. Его главное назначение — образование аэродинамических сил, а второстепенное — установочное. Он служит основой, на которую устанавливают все остальные части.
Фюзеляж
Если говорить о частях самолета и их названиях, то фюзеляж — одна из самых важных его составляющих. Само название происходит от французского слова “fuseau”, которое переводится, как “веретено”.
Планер можно назвать “скелетом” самолета, а фюзеляж — его “телом”. Именно он связывает крылья, хвост и шасси. Здесь размещается экипаж лайнера и все оборудование.
Он состоит из продольных и поперечных элементов и обшивки.
Крылья
Как устроено крыло самолета? Оно собирается из нескольких частей: левая или правая полуплоскости (консоли) и центроплан. Консоли включают наплыв крыла и законцовки. Последние могут быть разными у отдельных видов пассажирских лайнеров. Есть винглеты и шарклеты.
Крыло самолета.
На крыло устанавливают меньшие консоли для улучшения их работы. Это элероны, закрылки, предкрылки и т.д. Внутри крыльев расположены топливные баки.
На работу крыла влияет его геометрическая конструкция — площадь, размах, угол, направление стреловидности.
Хвостовое оперение
Оно располагается в хвостовой или носовой части фюзеляжа. Так называют целую совокупность аэродинамических поверхностей, которые помогают пассажирскому лайнеру надежно держаться в воздухе. Они разделяются на горизонтальные и вертикальные.
К вертикальным относят киль или два киля. Он обеспечивает путевую устойчивость воздушного судна, по оси движения. К горизонтальным — стабилизатор. Он отвечает за продольную устойчивость самолета.
Шасси
Это те самые устройства, которые помогают самолету взлетать или садиться, рулить по взлетно-посадочной полосе. Это несколько стоек, которые оборудованы колесами.
Вес пассажирского лайнера напрямую влияет на конфигурацию шасси. Чаще всего используется следующая: одна передняя стойка и две основных. У Аэробуса А320 именно так располагаются шасси. У воздушных судов семейства Боинг 747 — на две стойки больше.
В колесные тележки входит разное количество пар колес. Так у Аэробуса А320 — по одной паре, а у Ан-225 — по семь.
Во время полета шасси убираются в отсек. Когда самолет взлетает или садиться. Они поворачиваются за счет привода к передней стойке шасси или дифференциальной работы двигателей.
Двигатели
Говоря о том, как устроен самолет и как он летает, нельзя забывать о такой важной части самолета, как двигатели. Они работают по принципу реактивной тяги
Они могут быть турбореактивными или турбовинтовыми.
Их крепят к крылу самолета или его фюзеляжу. В последнем случае его помещают в специальную гондолу и используют для крепления пилон. Через него подходят к двигателям топливные трубку и приводы.
У самолета обычно по два двигателя.
Авионика
Это все те системы, которые обеспечивают бесперебойную работу самолета в любых погодных условиях и при большинстве технических неисправностях.
Сюда относят автопилот, противообледенительная система, система бортового электроснабжения и т.д.
Curtiss-Wright VZ-7
Этот необычный летательный аппарат называли «летающим джипом» и он также имел функцию вертикального взлета и посадки. Судно разрабатывалось в 1958 году для испытаний в интересах ВВС США.
Авиаконструкторы в полной мере попытались выполнить требования заказчика и сделать простую конструкцию. Она должна была легко обслуживаться и транспортироваться в грузовике. Получился по сути вертолет с четырьмя винтами, которые приводились в движение турбовинтовым двигателем. Испытания показали стабильность работы аппарата в воздухе. Он мог брать на борт пассажира или около 100 кг груза.
Федеральное агентство новостей  / 
Джипом «вертолет» прозвали, потому как он являлся первой попыткой ВС США создать летающий автомобиль. Но как бы заманчиво конструкция ни выглядела, она была смертельной ловушкой, так как ее роторы не были защищены.
Впоследствии военные отказались от использования VZ-7. В 1960 году они вернули два аппарата фирме-производителю. Машина не оправдала надежд армии: при массе около 1 тонны, она могла разгоняться лишь до 50 км/ч и подниматься на высоту в 60 метров.
Как выглядит полет с точки зрения физики
Невозможный, согласно математическим расчетам Ньюкома, полет современных лайнеров можно объяснить простым опытом. Для него понадобятся 2 одинаковые банки, пара похожих мух и весы. На одну чашу ставят емкость с насекомым, которое неподвижно сидит на дне. На другой оказывается банка с постоянно летающей мухой.
По логике, первая чаша должна перевесить фактически пустую вторую емкость. Но на деле обе части мерила окажутся в балансе. Летающая муха поднимается в воздух за счет направленного вниз потока импульса, добавляя банке несколько граммов и уравновешивая силу тяжести.
В случае с самолетом принцип в общих чертах похож, только организовано все гораздо сложнее. Летят аппараты благодаря подъемной силе (ПС), возникающей при взаимодействии потоков воздуха и крыла с аэродинамической формой. Последние располагаются под углом. Острием они рассекают поток на направленный вниз и «набегающий», из-за чего под крылом образуется область высокого давления, а над ним – низкого. Разница в итоге и порождает подъемную силу.
Но чтобы взлететь, аппарату нужно компенсировать не только силу тяжести за счет подъемной, но и противостоять силе сопротивления воздуха тягой. В отличие от насекомых, судно не способно набрать нужные скорость и высоту с помощью взмахов крылышками. «Стать на воздух» самолет сможет на определенной скорости, набрать которую помогают двигатели.
Наглядное объяснение того, как и почему летают самолеты. Какую роль в передвижении по воздуху играют крыло, двигатель и другие части конструкции.
Железнодорожные транспортеры (колея 1520 мм)
Каталог по транспортёрам железных дорог СССР колеи 1520 мм
№ 161 ПКБ ЦВ 1997 г. Предисловие
Фургон ГАЗ-2752 Соболь 4х4 Фото Характеристики Размеры
Истребители
Главной задачей этих аппаратов является уничтожение самолетов и других объектов, которые находятся в воздухе.
Названия самолетов-истребителей знатоку военного дела тоже скажут о многом. Наиболее известные советские модели периода Второй мировой войны – ЛаГГ-3, И-15 бис, МиГ-3, И-16, И-153, Як-1. В эту же эпоху мировую известность завоевали немецкие самолеты Bf.109, Bf.110 и Fw 190, а также реактивные Me.262, Me.163 Komet и He 162 Volksjager.
Среди советских истребителей более поздней эпохи следует выделить МиГ-31, Су-27 и МиГ-29. В настоящее время небо заполняют современные российские самолеты. Названия их прекрасно известны специалистам авиатехники. Это истребители поколения 4++ Су-35 и Миг-35.
Из современных американских моделей выделяются первый в мире истребитель поколения номер пять Boeing F-22, а также более ранние модели F-4 и F-15 Eagle.
Принцип работы
Вертолеты Як.
В чем вы видите основную проблему ВКО РФ?
Многообразие
Мы узнали, что представляет собой классификация самолетов, их виды, типы, названия тоже рассмотрели. Как видим, представлено очень большое количество моделей, выполняющих различные функции, имеющих очень разные технические характеристики. Мир авиации действительно многогранен, и в одном обзоре не получится описать абсолютно все его стороны.
Тем не менее общее представление мы по данному вопросу дать можем, описав наиболее известные вошедшие в историю самолеты. Виды и названия, несмотря на свою многочисленность, все-таки реально систематизировать определенным образом, чтобы внести ясность в суть этой темы.
Льготы семье
Членам семьи защитника родины со стороны государства также предоставляются различные социальные льготы.
Привилегии жен и детей
- Несовершеннолетним детям и женам гарантируют бесплатное медицинское обслуживание.
- Оплачивается проезд до мест отдыха (один раз в год).
- Жена получает повышенное пособие по беременности и родам, по уходу за ребенком, единовременная послеродовая выплата тоже увеличена.
- В дошкольные и школьные образовательные учреждения дети контрактников зачисляются вне очереди.
- Компенсация оплаты детского сада (до 90%).
- Приоритетное право жен на трудоустройство в ту часть, в которой по контракту служит супруг (при наличии необходимого образования).
- Компенсация за жкх.
Ежемесячно происходит возмещение части оплаты за коммунальные услуги. Размер этой компенсации может составлять 50% от общей суммы. Деньги возвращаются обратно на расчетный счет военнослужащего или его жены.
ВНИМАНИЕ! Выплата компенсаций будет производиться с момента оформления льготы в органах социальной защиты, каждые полгода ее необходимо подтверждать
Классификация воздушных судов
Все авиалайнеры подразделяются на две основные группы в зависимости от назначения: военные и гражданские. Главное отличие самолетов второго типа заключается в наличии салона, который оборудован специально для транспортировки пассажиров. Пассажирские воздушные суда, в свою очередь, делятся на магистральные ближние (летают на расстояния до 2000 км), средние (до 4000 км) и дальние (до 9000 км). Для перелетов на большие расстояния используются авиалайнеры межконтинентального типа. Также в зависимости от разновидности и устройства такие летательные аппараты различаются по весу.
Механизация крыла самолета
Крыло самолета — сложная инженерная конструкция, состоящая из множества деталей. Для создания силы, способной поднять самолет в воздух, крылу придается аэродинамическая форма.
В разрезе классическое крыло напоминает вытянутую каплю с плоской нижней частью. Благодаря такой форме, набегающий во время полета аэроплана воздушный поток, сжимается в нижней поверхности крыла, а в верхней образуется разреженное пространство. Сформировавшиеся при этом силы начинают толкать крыло в сторону разреженного пространства, то есть вверх. Таким образом, создается подъемная сила.
Но эти условия полета формируются только при достаточной скорости. Поэтому все самолеты (кроме самолетов с вертикальным взлетом) сначала разгоняются. Им нужно набрать определенную скорость, чтобы оторваться от взлетной полосы и начать набор высоты. Это так называемая скорость отрыва. Она для каждого самолета своя, и даже для одного и того же самолета, но с разной взлетной массой, она тоже будет отличаться. И только после набора этой скорости, крыло начинает поддерживать самолет и не дает ему упасть.
На этапе разгона и набора высоты, для создания большей силы подъема, крыло должно иметь, как можно большую площадь.
Также большая площадь необходима для снижения и посадки аэроплана. Однако в прямолинейном полете, желательно чтобы площадь крыла была как можно меньше с целью создания наименьшего сопротивления. Все эти противоречивые требования «уживаются» в конструкции крыла при помощи специальных механических устройств.
Механизация крыла самолета подразделяется на механические устройства, расположенные на задней и передней кромках крыла.
Основное предназначение этих устройств – управление подъемной силой и сопротивлением самолета, преимущественно когда самолет взлетает или садится. Средства механизации крыла должны отвечать довольно жестким требованиям, и, в первую очередь, к ним относятся слаженность действия механизмов и безотказность их работы. Механизация крыла самолета конструкция и назначение отдельных его составляющих частей представлены ниже.
Механизация крыла на примере Боинг-737
Так рождалась легенда
Шпангоуты
Они могут быть усиленными или обычными. Последние обеспечивают сохранность формы поперечного сечения модуля. Усиленные шпангоуты используются на участках скопления больших нагрузок на корпус. На них находятся узлы, стыкующие агрегаты, закрепляющие грузы, крупное оборудование, двигатели и пр. Усиление устанавливают также по границам крупных вырезов в корпусе. Обычные шпангоуты имеют, как правило, рамную конструкцию. Они изготавливаются из штампованного или гибкого листа. Усиленные элементы выполняют в форме замкнутой рамы швеллерного или двутаврового сечения. Касательный поток выступает как опорная реакция. Рама распределяет внешнее воздействие по всему периметру. Сама же она действует на изгиб. Он определяет ее сечение. Конструкция такой рамы монолитная или сборная. На участках установки перегородок усиленный шпангоут зашивают стенкой полностью. Она подкрепляется горизонтальными и вертикальными профилями. Обшивка шпангоута может осуществляться также сферической оболочкой. Подкрепляющие элементы при этом располагаются радиально.
Операторы
Немного истории
Самые первые самолеты (братьев Райт, США – 1903 г.; «Вуазен», Франция – 1905г; «Блерио», Франция – 1906 г.; «Рой», Англия – 1908 г.) изготавливались из тонких стальных труб, обтянутых материей, или имели деревянную конструкцию и полотняную обшивку поверхностей. Следующим шагом совершенствования конструкций самолета следует считать замену тканей на обшивку фанерой. Для повышения прочности фанерных конструкций, их стали делать в несколько слоев, скрепленных клеем.
Однако, деревянные конструкции были довольно неуклюжими, имели большое сопротивление во время полета. С увеличением скоростей самолетов, повышением нагрева конструкций и элементов двигателей, их использование стало небезопасным. Конструкторы стали постепенно заменять деревянные детали на металлические. Но полностью металлические самолеты появились не сразу.
Несовершенная технология производства металла на первых этапах его применения в авиации, делала конструкции из него, тяжелее деревянных, поэтому переход на металл происходил не быстро. Первые пробные аэропланы целиком из металла были изготовлены немцами в начале второго десятилетия прошлого века. По весу они превышали деревянные конструкции в несколько раз, и их летные данные оставляли желать лучшего.
После войны основной причиной развития металлических самолетов послужило появление пассажирской авиации, потребовавшей производства большого количества самолетов с длительными сроками эксплуатации. Деревянные конструкции набухали под действием неблагоприятных атмосферных явлений (влаги, температуры). При определенных условиях они начинали подгнивать. Все это приводило к их быстрому выходу из строя, и не удовлетворяло требованиям гражданской авиации.
Ученые многих стран трудились над совершенствованием металлических материалов для авиастроения и технологии их изготовления. В СССР, одним из основоположников металлического самолетостроения стал знаменитый авиаконструктор Андрей Николаевич Туполев.
В 30-е годы прошлого столетия металл почти полностью вытеснил дерево в конструкции самолетов. Однако деревянные конструкции еще некоторое время применялись в отдельных случаях. В частности, в конструкциях советских истребителей Лагг-3, И-16, Як-1 и других, участвовавших в Великой Отечественной войне, использовались деревянные элементы. Это было сделано из соображений экономии, так как деревянные конструкции в изготовлении обходились дешевле металлических.
Принцип работы
Принцип работы ТВВД в общих чертах напоминает принцип работы двухконтурного турбореактивного двигателя, коим он в определенной степени и является. Поток воздуха попадает в первый контур – корпус двигателя. Там он попадает в осевой компрессор на его подвижные лопатки, которые сжимают его и вытесняют в направлении неподвижные лопаток, придающих ему осевое направление движения. Ряд неподвижных и подвижных лопаток – это ступень компрессора, и чем больше таких ступеней, тем выше степень сжатия воздуха.
После сжатия в компрессоре воздушный поток под давлением поступает в камеру сгорания, где находятся топливные форсунки и воспламенители. Сама камера сгорания может быть кольцевой или же состоять из нескольких отдельных жаровых труб. В ней воздух перемешивается с впрыснутым через форсунки топливом, образуя топливный заряд, который воспламеняется и сгорает, образуя расширенные газы.
Продукты горения в виде газов, находящихся под высоким давлением, выходят из камеры сгорания и попадают на лопасти турбины. Турбина, как и компрессор, имеет неподвижные и подвижные лопатки, только устанавливаются они наоборот: сначала газы проходят через неподвижные лопасти, выравнивая свое направление, а затем попадают на подвижные, отдавая им часть своей энергии. За счет воздействия газов на лопатки турбина вращается, приводя в движение компрессор, закрепленный с ней на одном валу. Как и компрессор, турбина состоит из нескольких ступеней, но их количество не превышает 5-ти.
В турбовинтовентиляторном двигателе кроме основной турбины есть еще одна, вращающая винтовентилятор, и эти турбины работают независимо одна от другой. Вал привода вентилятора обычно размещается внутри вала привода компрессора, при расположении винтовентилятора в передней части двигателя. Если винтовентилятор располагается в задней части ТВВД, то свободная турбина связана напрямую с винтами через корпус, что упрощает конструкцию. Турбина винтовентилятора размещена за основной турбиной и приводится в движение все теми же газами.
После прохождения турбин отработанные газы, все еще имеющие высокую скорость и температуру, выходят наружу через сопло, образуя реактивную тягу. Сопло в самом простом исполнении – это сужающаяся труба, но в некоторых случаях можно регулировать ее сечение и даже направленность выхода реактивного потока.
Шаг 2. Планирование времени
Едва ли найдётся несколько человек, которые справлялись с проектом, требующим такого же внимания, усилий и времени, как строительство самолета с нуля. Это занятие не для дилетантов. Оно требует постоянных и размеренных усилий в течение длительного времени.
Для того чтобы задержек на этом пути было меньше, и прогресс над проектом не стоял на одном месте, можно разбить всю работу на много мелких задач. Работа над каждой задачей не покажется такой уж сложной, а успех придет постепенно по мере выполнения каждой задачи. В среднем строителю потребуется от 15 до 20 часов в неделю для того, чтобы закончить проект простого самолета за приемлемое время.
Для увлеченных строителей большинство авиационных проектов занимает по времени от двух до четырех лет. В среднем же строительство самолета может занять по времени пять и даже десять лет. Именно поэтому опытные авиационные строители никогда не станут назначать точную дату первого полёта, несмотря на постоянные вопрошающие взгляды друзей. В качестве отговорки можно сказать «дело не стоит» или «как только, так сразу».
Идеалистам здесь не место
Не все строители осознают важность правильного планирования времени. Самолетостроение не является социальным мероприятием, и в действительности во время работы может быть чертовски одиноко
Общительные натуры могут найти это занятие более трудным, чем можно себе представить. Поэтому каждый, кто посвятил себя этому делу, должен находить удовольствие в работе в одиночку.
Следующий самолет, который будет построен без нестыковок в отверстиях, станет первым за все времена. Роберт Пирсинг в своем культовом романе «Дзен и искусство ухода за мотоциклом» рассказывает об ошибках при сверлении отверстий. Эти ошибки могут отбить у строителя стремление работать над проектом на долгое время. Подобные ошибки часто сопутствуют авиационным проектам и в том случае, если строитель не обладает личными качествами, которые бы подтолкнули его справиться с подобными трудностями, проект может быть закрыт.
Перфекционистам, которые стремятся к совершенству во всем, следует поискать другое занятие. Если бы все самолеты должны были идеально соответствовать законам аэродинамики, вряд ли бы кто-то осмелился взлететь. Перфекционизм часто ошибочно принимается за ремесло, но это крайне разные вещи. Не имеет значения, насколько хороша вещь: всегда можно что-то улучшить, сделать ярче и качественнее. Задача не в том, чтобы сделать лучший самолёт – задача в том, чтобы сделать практичный самолёт, чтобы строителю не было стыдно за него, и он не боялся на нем летать.
Примечания
- Антонов Н. С. Химическое оружие на рубеже двух столетий // М.: Прогресс. 1994. — 174 с. ISBN 01-004462-5.
-
Артамонов В. И.
- ↑
Как производят реактивные двигатели для моделей самолетов?
Их производство для моделей самолетов занимает около 6 часов. Сначала вытачивается базовая пластина из алюминия, к которой крепятся все остальные детали. По размеру она совпадает с хоккейной шайбой.
К ней прикрепляют цилиндр, поэтому получается что-то вроде консервной банки. Это будущий двигатель внутреннего сгорания. Далее устанавливается система подачи топлива. Чтобы его закрепить, в основную пластину вкручиваются шурупы, предварительно опущенные в специальный герметик.
Двигатель для модели самолета.
Каналы стартера крепятся с другой стороны камеры, чтобы перенаправлять выбросы газа в турбинное колесо. В отверстие сбоку от камеры сгорания устанавливается спираль накаливания. Она поджигает топливо внутри двигателя.
Потом ставят турбину и центральную ось цилиндра. На нее ставят колесо компрессора, которое нагнетает воздух в камеру сгорания. Его проверяют с помощью компьютера, прежде чем закрепить пусковую установку.
Готовый двигатель еще раз проверяют на мощность. Его звук немногим отличается от звука двигателя самолета. Он, конечно, меньшей силы, но полностью напоминает его, придавая больше схожести модели.
Watch this video on YouTube
[править] Источники
- Пенцак И. Н., Роптанов Ф. И. Самолётоведение. Машиностроение. Москва. 1964 г.
- Степанец А. Т. «Иллюстрированнный авиационный словарь для молодёжи» . ДОСААФ. Москва. 1964 г.
- Павленко В. Ф. «Боевая авиационная техника». Москва. Военное Издательство. 1984 г.
- П. В. Балабуев, С. А. Бычков, А. Г. Гребенников, В. Н. Желдоченко, А. А. Кобылянский, А. К. Мялица, В. И. Рябков, Т. П. Цепляева. «Основы общего проектирования самолётов с газотурбинными двигателями». Часть 1. Харьков «ХАИ» 2003 г.
- П. В. Балабуев, С. А. Бычков, А. Г. Гребенников, В. Н. Желдоченко, А. А. Кобылянский, А. К. Мялица, В. И. Рябков, Т. П. Цепляева. «Основы общего проектирования самолётов с газотурбинными двигателями». Часть 2. Харьков «ХАИ» 2003 г.
Самолеты, выполненные по схеме бесхвостка
В моделях данного типа нет важной, привычной части самолета. Фото летательных аппаратов «бесхвосток» («Конкорд», «Мираж», «Вулкан») показывает, что у них отсутствует горизонтальное оперение. Основными преимуществами такой схемы являются:
Основными преимуществами такой схемы являются:
Уменьшение лобового аэродинамического сопротивления, что особенно важно для самолетов с большой скоростью, в частности, крейсерской. При этом уменьшаются затраты топлива.
Большая жесткость крыла на кручение, что улучшает его характеристики аэроупругости, достигаются высокие характеристики маневренности.. Недостатки:
Недостатки:
- Для балансировки на некоторых режимах полета часть средств механизации задней кромки и рулевых поверхностей надо отклонять вверх, что уменьшает общую подъемную силу самолета.
- Совмещение органов управления ЛА относительно горизонтальной и продольной осей (вследствие отсутствия руля высоты) ухудшает характеристики его управляемости. Отсутствие специализированного оперения заставляет рулевые поверхности находятся на задней кромке крыла, выполнять (при необходимости) обязанности и элеронов, и рулей высоты. Эти рулевые поверхности называются элевоны.
- Использование части средств механизации для балансировки самолета ухудшает его взлетно-посадочные характеристики.
Что вам понадобится
Таможенные ограничения
Советские пассажирские самолеты
На достойном уровне была представлена и советская пассажирская авиационная промышленность. Большинство моделей – это самолеты “Аэрофлота”. Названия главных марок: Ту, Ил, Ан и Як.
Первым отечественным реактивным авиалайнером является выпущенный в 1955 году Ту-104. Ту-154, первый взлет которого был совершен в 1972 году, считается самым массовым советским пассажирским воздушным аппаратом. Ту-144 1968 года выпуска обрел легендарный статус, так как является первым в мире авиалайнером, который сумел пробить звуковой барьер. Он мог развивать скорость до 2,5 тыс. км/ч, и этот рекорд к нашему времени не побит. На данный момент последней действующей моделью авиалайнера, разработанной конструкторским бюро Туполева, является самолет Ту-204 1990 года выпуска, а также его модификация Ту-214.
Естественно, что кроме Ту существуют и другие самолеты “Аэрофлота”. Названия самых популярных: Ан-24, Ан-28, Як-40 и Як-42.
Литература
- Erickson, John; «Radiolocation and the air defense problem: The design and development of Soviet Radar 1934-40», Social Studies of Science, vol. 2, pp. 241—263, 1972
- Ширман Я. Д., Голиков В. Н., Бусыгин И. Н., Костин Г. А. Теоретические основы радиолокации / Ширман Я. Д.. — М.: Советское радио, 1970. — 559 с.
- Справочник по радиолокации / Сколник М.И.. — М., 2014. — 1352 с. — ISBN 978-5-94836-381-3.
- Справочник по радиолокации / Сколник М.И.. — М., 2014. — 1352 с. — ISBN 978-5-94836-381-3.
- Бакут П. А., Большаков И. А., Герасимов Б. М., Курикша А. А., Репин В. Г., Тартаковский Г. П., Широков В. В. Вопросы статистической теории радиолокации. — М.: Советское радио, 1963. — 423 с.
Каталог вооружения
Права и обязанности
Командир воздушного судна отвечает за принятие всех решений на любом этапе полёта.
Командир воздушного судна имеет право:
- принимать окончательные решения о взлете, полёте и посадке воздушного судна, а также о прекращении полёта и возвращении на аэродром или о вынужденной посадке в случае явной угрозы безопасности полёта воздушного судна в целях спасения жизни людей, предотвращения нанесения ущерба окружающей среде;
- в целях обеспечения безопасности полёта воздушного судна отдавать распоряжения любому находящемуся на борту воздушного судна лицу и требовать их исполнения;
- принимать решения о сливе топлива в полете, сбросе багажа, груза и почты, если это необходимо для обеспечения безопасности полёта воздушного судна и его посадки;
- принимать иные меры по обеспечению безопасного завершения полёта воздушного судна.
При большой продолжительности полёта на борту самолёта может находиться несколько командиров, однако взлёт и посадку должен осуществлять один и тот же командир. Второй КВС заменяет основного лишь на средней части перелёта.
«Прорывные решения»
ЦКБ-26 создавался для поражения объектов военной и хозяйственной инфраструктуры противника. Однако в отличие от фронтовой (оперативно-тактической) авиации дальние бомбардировщики были предназначены для выполнения боевых задач в глубоком тылу неприятеля, за сотни и тысячи километров от позиций своих войск.
Как отмечают эксперты, ЦКБ-26 был во многом экспериментальным самолётом и не являлся полноценной боевой машиной. Работы над его совершенствованием привели к созданию модели ДБ-3, уже подходившей для массового серийного производства.
- Пилот ДБ-3 ВВС СССР
В августе 1936 года ильюшинский бомбардировщик был принят на вооружение ВВС Красной армии. Его производство развернулось на предприятиях в Москве, Воронеже и Комсомольске-на-Амуре. В авиационных частях СССР новые машины заменяли тихоходные и маломанёвренные туполевские бомбардировщики ТБ-3.
ДБ-3 получился достаточно компактной машиной, обладая при этом хорошей для того времени грузоподъёмностью. В зависимости от дальности расположения цели и погодных условий самолёт мог взять на борт 1—2 т боеприпасов. Длина детища Сергея Ильюшина составляла — 14,22 м, высота — 4,19 м.
К тому же новый бомбардировщик отличался высокой для своего класса скоростью — ДБ-3 мог разгоняться до 390 км/ч. По мнению Владимира Попова, скоростные характеристики советского самолёта вполне удовлетворяли требованиям к такому типу авиатехники в конце 1930-х и первой половине 1940-х годов.
«В ЦКБ-26 или ДБ-3 было реализовано немало прорывных технологических решений. Ильюшину удалось разработать скоростную и манёвренную машину, способную к тому же поднимать в воздух большой объём боеприпасов. Отдельных комплиментов заслуживают аэродинамика и надёжные конструкции, которые использовались для сборки ДБ-3», — рассказал Попов.
Также по теме
«Чёрная смерть»: как Сергею Ильюшину удалось создать самый массовый самолёт Второй мировой войны
29 декабря 1940 года состоялся первый полёт легендарного советского штурмовика Ил-2 под управлением лётчика-испытателя Владимира…
Новый бомбардировщик оснащался двигателем М-86 мощностью 960 л. с.
Высокие лётные и эксплуатационные характеристики самолёта были подтверждены в 1938—1939 годах, когда советские пилоты совершили дальние беспосадочные перелёты из Москвы на Дальний Восток и в Северную Америку через Атлантический океан.
Между тем Ильюшин продолжал совершенствовать своё детище. В конце 1930-х годов для нужд авиации Военно-морского флота СССР был разработан ДБ-3Т. Данный самолёт предназначался для уничтожения кораблей противника с помощью торпедного вооружения. Также он мог применяться в качестве дальнего морского разведчика.
В мае 1939 года Коккинаки поднял в небо модификацию ДБ-3Ф с улучшенной аэродинамикой и более мощным двигателем. Обновлённый бомбардировщик мог развивать скорость до 445 км/ч.
К недостаткам ДБ-3 эксперты относят проблемы с поддержанием устойчивости во время горизонтального полёта и уязвимость при атаках вражеской истребительной авиации. Как отметил в разговоре с RT член ассоциации военных историков Второй мировой войны Дмитрий Хазанов, ильюшинские машины нуждались в прикрытии, обеспечить которое ВВС Красной армии могли не всегда.
«С моей точки зрения, оборонительного вооружения у ДБ-3 было недостаточно. Экипаж с трудом мог отбиться от истребителей, хотя попытки усилить вооружение для самообороны предпринимались. Например, ДБ-3 удалось оснастить тремя огневыми точками: башенный стрелок, подфюзеляжная турель и пулемёт в носовой части. Но и этого оказалось мало», — говорит Хазанов.