Электрический ракетный двигатель

Таможенные ограничения

Моторный импульс по классам

  Класс (Базовый 26) Общий импульс (Н · с) Общий импульс (фунт-сила · с) Аэрокосмический аппарат или ракета (ы) Требования США
Микро 0–0,3125 0–0,07
1 / 4A 0,3126–0,625 0,071–0,14
1 / 2А 0,626–1,25 0,141–0,28
А 1,26–2,50 0,281–0,56
B 2,51–5,00 0,561–1,12
C 5.01–10.0 1,121–2,25
D 10.01–20.0 2,251–4,5
E 20.01–40.0 4,51–8,99
F 40.01–80.0 8,991–18,0
грамм 80.01–160 18.01–36.0 Самая большая модель ракетного двигателя по версии TRA и NAR.
ЧАС 160.01–320 36.01–71.9 Для покупки требуется сертификат уровня 1, который можно получить в Триполи или НАР . Топливо менее 125 г освобождено от уплаты Федерального управления гражданской авиации.
я 320.01–640 71,9–144
Класс в килоньютон (кН) Уровень 2 Сертификат, необходимый для покупки, доступен в Триполи или НАР для полета.
J 640,01–1 280 144.01–288 .
K 1 280,01–2 560 288.01–576
L 2,560,01–5,120 576.01–1 151
M 5 120,01–10 240 1,151,01–2,302 Для покупки требуется сертификат уровня 3, который можно получить в Триполи или НАР .
N 10 240,01–20 480 2 302,01–4 604
О 20 480,01–40 960 4 604,01–9 208
п 40 960–81 920 9 210–18 400 Требуется отказ от требований FAA / AST Class 3.
Q 81 920–163 840 18 400–36 800
р 163 840–327 680 36 800–73 700 Путешественник IV USCRPL
S 327 680–655 360 73 700–147 000 WAC капрал CSXT GoFast DARE’s Stratos III Самый большой мотор, используемый любителями.
Класс меганьютона (MN) Следующие ниже двигатели классифицируют профессиональные силовые установки с использованием любительских кодов двигателей, которые не используются в промышленности.
Т 655 кН – 1,3 МН 147 000–295 000 200 000 фунт-сила-сила — это предел для определения FAA «любительской» ракеты.
U 1,3-2,6 МН 295 000–589 000 Твердотопливные ускорители Atlas V Apollo запускают спасательную ракету
V 2,6-5,2 МН 589 000–1 180 000 Гибридная ракета SSC ​​Bloodhound
W 5.2-10.MN 1 180 000–2 360 000 SS-520 Самая маленькая орбитальная ракета
Икс 10,5–21 МН 2 360 000–4 710 000 Лямбда 4S
Y 21–42 МН 4 710 000–9 4 30 000 Авангард ГЭМ-40 СРБ Электрон
Z 42–84 МН 9 430 000–18 900 000 Черная стрела Меркурий-Редстоун Пегас-XL
AA 74-168МН 18 900 000–37 700 000 Сокол 1 Минотавр I VLS-1
AB 168–336МН 37 700 000–75 400 000 МВ Минотавр-Ц Стрела
AC 336–671MN 75 400 000–151 000 000 Ariane 3 Titan II Днепр
Гиганьютон (GN) класс
ОБЪЯВЛЕНИЕ 671MN – 1.34GN 151 000 000–302 000 000 Восток Дельта II Сокол 9 v1.0
AE 1,34–2,68GN 302 000 000–603 000 000 Falcon 9 v1.1 Falcon 9 Полная тяга Delta IV Heavy
AF 2 680 000 000–5 370 000 000 603 000 000–1 2 10 000 000 Falcon Heavy New Glenn
AG 5,37 * 10 9 –10,7 * 10 9 1,21 * 10 9 –2,41 * 10 9 Система запуска космического корабля » Сатурн V»
AH 10,7 * 10 9 –21,4 * 10 9 2,41 * 10 9 –4,82 * 10 9 Звездолет Ареса V
AI 21,4 * 10 9 –42,8 * 10 9 4,82 * 10 9 –9,64 * 10 9
AJ 42,8 * 10 9 –85,6 * 10 9 9,64 * 10 9 –19,3 * 10 9 Морской дракон

Зачем нужен ядерный двигатель для космического корабля

Космическую эру человечество открыло в начале 1960-х г.г., и хотя с тех пор прошло уже 60 лет, несмотря на все успехи в деле изучения ближнего космоса, космический полет чуть дальше орбиты Луны воспринимается как задача чудовищной сложности. Почему так происходит и где те самые “караваны ракет” летящие к далеким мирам?

Техника подвела! Дело в том, что фактически сейчас мы используем такие же точно двигатели, как и на заре космонавтики. Нет, конечно с технической точки зрения современные двигатели мощнее, экономичнее и лучше старых, но существуют у них ограничения, которые до сих пор мы обойти не можем.

Пока у человечества не будет новых мощных двигателей, о далеких планетах остается только мечтать

В чем же дело? Вот в чем: жидкостные ракетные двигатели открыли человеку дорогу в космос – на околоземные орбиты. Но дальше двигаться на этой энергетической базе просто не имеет смысла: скорость истечения реактивной струи в них не превышает 4,5 км/с, а для межпланетных полетов нужны десятки километров в секунду.

Иными словами, мы имеем дело с классическим технологическим пределом, преодолеть который нельзя. Если, конечно, не создать принципиально иной двигатель для космических перелетов, например – ядерный!

Разработки ядерных ракетных двигателей в США

С 1955 года в Америке приступили к выполнению программы по созданию ядерных реакторов типа NERVA, предназначенных для космических ракетных двигателей. Отработка велась сразу на опытных полноразмерных реакторах без сопла – Kiwi. При этом тепловыделяющие элементы часто разрушались из-за трещин в защитном покрытии. В конце 1963 года была поставлена задача осуществить общую разработку технологии ЯРД для обеспечения в 2014-2016 гг. пилотируемого полета к Марсу.

До 1972 года прошли испытания 20 ядерных реакторов, в том числе система NRX-A6 в течение одного часа работы реактора на полной мощности. 28 запусков стендовых ЯРДов имели суммарную продолжительность около 4 ч. Испытания проходили на полигоне в штате Невада.

В одном из вариантов ЯРД NERVA предварительно подогретый в рубашке охлаждения сопла и корпуса реактора водород поступает в тепловыделяющие сборки, где за счет специально развитой поверхности теплообмена обеспечивается его нагрев до 2360 К. Часть горячих газов отбирается для привода турбины турбонасосного агрегата, что обеспечивает расход водорода до 40,7 кг/с и тягу 33,6 т при тепловой мощности реактора 1510 МВт и его массе 3400 кг.

Американский ядерный двигатель проекта NERVA. Не сказать, что неудачный, однако же космическую революцию не совершил

Однако в 1973 г., американскую программу ядерного ракетного двигателя закрыли. Хотя в целом работы были вполне успешные, но… слишком уж медленно они шли и слишком уж дорого стоили. Фактически, за 20 лет работы в рамках программы “Нерва-2”, к концу 1970-х предполагалось только создание ядерного ракетного двигателя с тягой около 30 тонн (при том, что “обычные” ракетные двигатели давали около 700 тонн), со скоростью истечения реактивной струи – 8.1 км/с. Это было больше, чем у обычных ракет, но все равно слишком мало для того, чтобы планировать серьезные космические перелеты.

Когда в условиях далеко не резинового даже у США бюджета, стали выбирать между ядерным ракетным двигателем и программой многоразовых космических челноков “Шаттл”, предпочтение отдали “Шаттлу”. Программа разработки ядерного ракетного двигателя для космических предметов была закрыта.

Недостатки реактивного двигателя

  • Создает сильный шум при работе. При взлете реактивного самолёта создается шум до 120 децибел. Для человеческого уха это значение близко к болевому порогу. Если стоять на расстоянии 100 метров от места взлета космического корабля, можно получить контузию. Ведь уровень шума достигает 150 децибел. Ученым пока не удается подавить шум от реактивного движителя или решить эту проблему иным способом.
  • Расходует большой объем топлива. Он невероятно прожорлив. Чтобы вывести на орбиту ракетную систему с исходным весом 3000 тонн, необходима установка пяти таких двигателей. Они придают рабочему телу скорость 3 км/с. При этом высвобождается 10 тонн отработанных газов в секунду. За 4 секунды в камерах без остатка сгорает одна цистерна ракетного топлива.
  • Ограниченный ресурс для космических полетов. Все виды топлива, которые применяют для ракет, выделяют ограниченное количество энергии. Этого недостаточно для совершения полетов в пределах Галактики и даже между планетами Солнечной системы. Перспективным направлением считается использование ядерной энергии.
  • Большой вес и размер летательных аппаратов. Перед учеными, изучающими космос, стоят колоссальные задачи. Одна из главных – создание летательного аппарата для межпланетных и межзвездных перелетов. Они научились выводить на земную орбиту ракеты, спутники, достигли Луны. Для дальних полетов использовать реактивный двигатель невыгодно и нецелесообразно. Ученые подчитали, что для полета ракеты на Марс, ее стартовый вес должен составлять – 30 000 тонн, а на Юпитер – 250 000 тонн. Соответственно, увеличатся и размеры летательных аппаратов.
  • Топливо расходуется быстро. Для длительного полета необходим большой объем энергоносителя. Емкости с горючим составляют значительную часть от массы самолёта или космического корабля.

Ссылки

Как устроены ракетные двигатели (3 минуты чтения и все понятно)

Явление отдачи

Но научные поиски и разработки на этом не прекращались. Как всегда, на помощь пришла природа, которая, в большинстве случаев и наталкивает изобретателей на удивительные открытия.

Наблюдения за морскими жителями, такими как осьминоги, кальмары и каракатицы, привели к неожиданным результатам. Манера движения этих морских обитателей, была схожа с кратковременным толчком. Будто тело отталкивается отчего – то и продвигается вперед.

Эти наблюдения были чем-то схожи с замечаниями Гюегенса про выстрел и пушку, которые мы упоминали выше.

Таким образом, в физики появилось понятие «явление отдачи». В ходе дальнейших научных исследований было выяснено, что именно благодаря явлению отдачи происходит все движение на планете Земля: автомобиль отталкивается от земли, корабль – от воды и т.д.

Движение тел происходит благодаря передаче импульса от одного объекта другому. Для объяснения явления приведем простейший пример: вы решили толкнуть своего товарища в плечо, приложили определенную силу, в результате которой, он сдвинулся с места, но и вы испытали силу, отталкивающую вас в противоположную сторону.

Конечно, расстояние, на которое сдвинетесь вы и ваш друг, будет зависеть от ряда факторов: сколько вы весите, как сильно вы его толкнули.

Устройство

Устроен типичный реактивный двигатель следующим образом. Основные его узлы — это:

— камера для сгорания;

Рассмотрим данные элементы более подробно. Компрессор представляет собой несколько турбин. Их задача – всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха. Часть такого сжатого воздуха подается в камеру сгорания. В ней воздух смешивается с топливом и происходит воспламенение. Этот процесс еще больше увеличивает тепловую энергию.

Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует еще через одну турбину, лопасти которой вращаются за счет воздействия газов. Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему. Температура, уже достаточно высокая, продолжает расти за счет эффекта дросселирования. Затем воздух выходит окончательно.

Жидкостный реактивный двигатель

Тот, кто стрелял из огнестрельного оружия или просто наблюдал этот процесс со стороны, знает, что существует сила, которая непременно оттолкнет ствол назад. Причем при большем количестве заряда отдача непременно увеличивается. Так же работает и реактивный двигатель. Принцип работы его схож с тем, как происходит отталкивание ствола назад под действием струи раскаленных газов.

Что касается ракеты, то в ней процесс, во время которого происходит воспламенение смеси, является постепенным и непрерывным. Это самый простой, твердотопливный двигатель. Он хорошо знаком всем ракетомоделистам.

В жидкостном реактивном двигателе (ЖРД) для создания рабочего тела или толкающей струи применяется смесь, состоящая из топлива и окислителя. Последним, как правило, выступает азотная кислота или жидкий кислород. Топливом в ЖРД служит керосин.

Принцип работы реактивного двигателя, который был в первых образцах, сохранен и до настоящего времени. Только теперь в нем используется жидкий водород. При окислении этого вещества удельный импульс увеличивается по сравнению с первыми ЖРД сразу на 30%. Стоит сказать о том, что идея применения водорода была предложена самим Циолковским. Однако существующие на тот момент трудности работы с этим чрезвычайно взрывоопасным веществом были просто непреодолимы.

Каков принцип работы реактивного двигателя? Топливо и окислитель попадают в рабочую камеру из отдельных баков. Далее происходит превращение компонентов в смесь. Она сгорает, выделяя при этом колоссальное количество тепла под давлением в десятки атмосфер.

Компоненты в рабочую камеру реактивного двигателя попадают по-разному. Окислитель вводится сюда напрямую. А вот топливо проходит более длинный путь между стенками камеры и сопла. Здесь оно разогревается и, уже имея высокую температуру, вбрасывается в зону горения через многочисленные форсунки. Далее струя, сформированная соплом, вырывается наружу и обеспечивает летательному аппарату толкающий момент. Вот так можно рассказать, какой имеет реактивный двигатель принцип работы (кратко). В данном описании не упоминаются многие компоненты, без которых работа ЖРД была бы невозможной. Среди них компрессоры, необходимые для создания нужного для впрыска давления, клапана, питающие турбины и т. д.

Твердотопливные ракеты: конфигурации

Читая описание для современных твердотопливных ракет, часто можно найти вот такое:

Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:

Твердотопливные двигатели обладают тремя важными преимуществами:

  • простота
  • низкая стоимость
  • безопасность

Но есть и два недостатка:

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Новый «Союз»

Активная фаза разработки ракеты среднего класса «Союз-5» началась в 2016 году. Планируется, что её будут использовать как для пилотируемых миссий, так и для коммерческих пусков. Старты будут осуществляться с космодромов Байконур и Восточный.

Для этих целей на Байконуре проводятся работы по модернизации стартового комплекса в рамках российско-казахстанского проекта «Байтерек».

Также по теме

«Давно пытались создать аналог»: в США заявили о готовности заменить российские двигатели РД-180

Двигатели BE-4 производства компании Blue Origin, принадлежащей владельцу Amazon Джеффу Безосу, выбраны в качестве силовых установок…

«Союз-5» — ракета среднего класса, которую создали на замену ракете-носителю «Зенит». Производство «Зенита» прекратили в связи с ухудшением российско-украинских отношений», — пояснил Моисеев.

На второй ступени «Союза-5» будут использоваться два двигателя РД-0124МС — модернизированные двигатели от третьей ступени ракеты «Союз-2.1Б».

В 2018 году были завершены эскизные работы, после чего «Роскосмос» заключил госконтракт с РКК «Энергия» на сумму 61,2 млрд рублей на создание и испытание ракеты «Союз-5».  

В рамках лётных испытаний, запланированных на 2022—2025 годы, с космодрома Байконур будут выполнены четыре запуска «Союза-5». Согласно планам, в 2023 году будет осуществлён пуск с новым российским пилотируемым кораблём «Федерация». Аппарат будет работать в беспилотном режиме. Годом позже должен быть произведён и пилотируемый запуск.

Производиться «Союз-5» будет в РКЦ «Прогресс».

Будущее ракетных двигателей

Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе — это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.

Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо — газообразный азот под давлением выбрасывается из резервуара через сопло.

Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать электромагнитные двигатели и ждать, что там еще выкинет Элон Маск со своим SpaceX.

Источник

Системы видеонаблюдения

Вооружение

Десять торпедных аппаратов калибра 533 мм расположены под углом побортно в районе ограждения выдвижных устройств.
За ограждением находятся 8 вертикальных ракетных шахт, в каждой из которых размещается по 4 ракеты. Возможность комбинировать ракетное вооружение дает гибкость в выполнении широкого набора боевых задач — от борьбы с субмаринами и поражения стационарных наземных целей до уничтожения всех типов надводных кораблей противника крылатыми ракетами систем «Калибр» и «Оникс».
По заявлению гендиректора предприятия-проектировщика субмарины — конструкторского бюро «Малахит» Владимира Дорофеева, многоцелевая атомная подводная лодка проекта 885 «Ясень» способна применять все находящиеся на вооружении ВМФ РФ крылатые ракеты морского базирования. Ясень-М также способна будет применять перспективные крылатые ракеты «Циркон». Следующим поколением после проекта «Ясень-М» будут подводные лодки проекта «Хаски», которые по состоянию на 2017 год находятся в разработке.

Как устроен реактивный двигатель? Что дает ему такую мощность?

На сегодняшний день этот вид двигателей широко используется в наши дни. Самолеты, ракеты, необычные транспортные средства (летающий костюм железного человека) — все это двигается с помощью газотурбинных двигателей. Кстати, об этом костюме у меня есть статья https://zen.yandex.ru/media/id/5cf58e799511bd00afb4dda1/reaktivnyi-kostium-jeleznogo-cheloveka-5cf62d01babd4000b0927efb

Как же он устроен? Принцип работы такого двигателя прост, но расчеты и конструкция крайне сложны. Проще говоря жидкий кислород, засасываясь в турбину, смешивается с топливом, которое сгорает в камере сгорания и в конце турбины (сопло), образует реактивную струю, толкающую тело.

Устройство

состоит реактивный двигатель из следующих элементов:

— камера для сгорания;

Компрессор состоит из нескольких турбин. Задача компрессора — это всасывать, а затем сживать воздух, который попал через лопасти. За счет сжатия повышается температура и давление. Часть такого сжатого воздуха попадает в камеру сгорания. В ней нагретый воздух смешивается с топливом (керосин) и в результате воспламеняется. Этот этап придает колоссальную тепловую энергию. После смесь, расширяясь, выходит из камеры сгорания на огромной скорости.

Далее этот мощный поток движется еще по одной турбине (задней), лопасти которой вращаются газами. Эта турбина, соединяясь с компрессором в передней части, приводит агрегат в движение Воздух нагретый до высоких температур выходит через выпускную систему (сопло). Высокая температура продолжает расти за счет эффекта дросселирования. Прошу заметить, что корпус турбины состоит и двух оболочек. В первой происходит весь процесс нагрева газа, а во второй происходит охлаждение за счет вентилятора.

Источник

Примечания

Галерея

Литература

Принцип действия РД

Теперь стоит разобраться с принципом работы реактивного двигателя. Для этого можно рассмотреть классику – жидкостные двигатели, которые практически не изменились со времен Циолковского. В этих агрегатах применяется топливо и окислитель.

В качестве последнего используется жидкий кислород либо же азотная кислота. В качестве горючего применяют керосин. Современные жидкостные двигатели криогенного типа потребляют жидкий водород. Он при окислении кислородом увеличивает удельный импульс (на целых 30 процентов). Идея о том, что можно использовать водород, также родилась в голове Циолковского. Однако на тот момент по причине чрезвычайной взрывоопасности пришлось искать другое горючее.

Принцип работы состоит в следующем. Компоненты поступают в камеру сгорания из двух отдельных баков. После смешивания они превращаются в массу, которая при сгорании выделяет огромное количество тепла и десятки тысяч атмосфер давления. Окислитель подается в камеру сгорания. Топливная смесь по мере прохождения между сдвоенными стенками камеры и сопла охлаждает эти элементы. Далее горючее, подогретое стенками, попадет через огромное количество форсунок в зону воспламенения. Струя, которая формируется при помощи сопла, вырывается наружу. За счет этого и обеспечивается толкающий момент.

Кратко принцип работы реактивного двигателя можно сравнить с паяльной лампой. Однако последняя устроена значительно проще. В схеме ее работы нет различных вспомогательных систем двигателя. А это компрессоры, нужные для создания давления впрыска, турбины, клапана, а также прочие элементы, без которых реактивный двигатель просто невозможен.

Несмотря на то что жидкостные двигатели потребляют очень много горючего (расход топлива составляет примерно 1000 грамм на 200 килограммов груза), их до сих пор используют в качестве маршевых агрегатов для ракеты-носителей и маневровых для орбитальных станций, а также других аппаратов космического назначения.

Рекомендации

Совместимое снаряжение

Из истории данного вопроса

Ракетный двигатель – один из старейших видов двигателя, известных человечеству. Мы не можем точно ответить на вопрос, когда именно была изготовлена первая ракета. Есть предположение, что это сделали еще древние греки (деревянный голубь Архита Тарентского), но большинство историков считает родиной данного изобретения Китай. Это произошло примерно в III столетии нашей эры, вскоре после открытия пороха. Первоначально ракеты использовали для фейерверков и других развлечений. Пороховой ракетный двигатель был достаточно эффективен и прост в изготовлении.

Первая боевая ракета была разработана в 1556 году Конрадом Хаасом, который придумывал различные виды вооружений для императора Фердинанда I. Этого изобретателя можно назвать первым создателем теории ракетных двигателей, также он является автором идеи многоступенчатой ракеты – в трудах Хааса подробно описан механизм работы летательного аппарата, состоящего из двух ракет. Изыскания продолжил поляк Казимир Семенович, живший в середине XVII века. Однако все эти проекты так и остались на бумаге.

Практическое использование ракет началось только в XIX столетии. В 1805 году британский офицер Уильям Конгрив продемонстрировал пороховые ракеты, которые имели небывалую по тем временам мощность. Презентация произвела должное впечатление, и ракеты Конгрива были приняты на вооружение английской армии. Их главным преимуществом, по сравнению со ствольной артиллерией, была высокая мобильность и относительно небольшая стоимость, а основным недостатком – кучность огня, которая оставляла желать лучшего. К концу XIX века широкое распространение получили нарезные орудия, стрелявшие очень точно, поэтому ракеты были сняты с вооружения.

Примерно так использовались ракеты Конгрива. Современная реконструкция

В России данным вопросом занимался генерал Засядко. Он не только усовершенствовал ракеты Конгрива, но и первым предложил использовать их для полета в космос. В 1881 году российский изобретатель Кибальчич создал собственную теорию ракетных двигателей.

Огромный вклад в развитие этого направления техники внес еще один наш соотечественник – Константин Циолковский. Среди его идей жидкостный ракетный двигатель (ЖРД), работающий на смеси кислорода и водорода.

В начале прошлого столетия энтузиасты во многих странах мира занимались созданием жидкостного РД, первым добился успеха американский изобретатель Роберт Годдард. Его ракета, работающая на смеси бензина и жидкого кислорода, успешно стартовала в 1926 году.

Вторая мировая война стала периодом возвращения ракетного оружия. В 1941 году на вооружение Красной армии была принята установка залпового огня БМ-13 – знаменитая «Катюша», а в 1943 – немцы начали использование баллистической Фау-2 с жидкостным ракетным двигателем. Она была разработана под руководством  Вернера фон Брауна, который позже возглавил американскую космическую программу. Германией также было освоено производство КР Фау-1 с прямоточными реактивным мотором.

Ракета Фау-2. Немцы называли ее «оружие возмездия». Правда, оно не слишком помогло Гитлеру

В разные годы предпринимались попытки создания ракетных двигателей, работающих за счет энергии ядерного распада (синтеза), но до практического применения подобных силовых установок дело так и не дошло. В 70-е годы в СССР и США началось использование электрических ракетных двигателей. Сегодня они применяются для коррекции орбит и курса космических аппаратов. В 70-е и 80-е годы были эксперименты с плазменными РД, считается, что они имеют хороший потенциал. Большие надежды связывают с ионными ракетными двигателями, использование которых теоретически может значительно ускорить космические аппараты.

Однако пока почти все эти технологии находятся в зачаточном состоянии, и основным транспортным средством покорителей космоса остается старая добрая «химическая» ракета. В настоящее время за титул «самый мощный ракетный двигатель в мире» соревнуется американский F-1, участвовавший в лунном проекте, и советский РД-170/171, который использовался в программе «Энергия-Буран».

Электрические ракетные двигатели

В электрических ракетных двигателях (ЭРД) в качестве источника энергии для создания тяги используется электрическая энергия. Удельный импульс электрических ракетных двигателей может достигать 10—210 км/с.

В зависимости от способа преобразования электрической энергии в кинетическую энергию реактивной струи, различают электротермические ракетные двигатели, электростатические (ионные) ракетные двигатели и электромагнитные ракетные двигатели.

Высокие значения удельного импульса ЭРД позволяет ему расходовать (в сравнении с химическими двигателями) малое количество рабочего тела на единицу тяги, но при этом возникает проблема большого количества электроэнергии, необходимой для создания тяги. Мощность, необходимая для создания единицы тяги ракетного двигателя (без учёта потерь), определяется формулой:

P=I2{\displaystyle P={\frac {I}{2}}}

Здесь P{\displaystyle P} — удельная мощность (ватт/ньютон тяги); I{\displaystyle I} — удельный импульс (м/c).
Таким образом, чем выше удельный импульс, тем меньше требуется вещества, и больше — энергии, для создания единицы тяги. Поскольку мощность источников электроэнергии на космических аппаратах весьма ограничена, это ограничивает и тягу, которую могут развить ЭРД. Самым приемлемым для ЭРД источником электроэнергии в космосе в настоящее время являются солнечные батареи, не потребляющие топлива, и обладающие достаточно высокой удельной мощностью (по сравнению с другими источниками электроэнергии).
Низкая тяга (не превышающая единиц ньютонов для самых мощных из современных электрических ракетных двигателей) и неработоспособность в атмосфере, на высотах менее 100 км сужают область применения электрических ракетных двигателей.

Принцип работы реактивного двигателя

В реактивных двигателях струи воздушных потоков, которые попадают в двигатели, встречаются с обращающимися с колоссальной скоростью турбинами компрессоров, которые засасывают воздух из окружающей среды (при помощи встроенных вентиляторов). Следовательно, происходит решение двух задач:

  • Первичное забирание воздуха;
  • Охлаждение в целом всего двигателя.

Это могут быть, в частности, смеси воздуха и керосина, как в турбореактивных двигателях современных реактивных самолетах, либо смеси жидкого кислорода и спирта, такими обладают кое-какие жидкостные ракетные двигатели, либо еще какое-то твердое топливо в пороховых ракетах. Как только образовалась топливно-воздушная смесь, происходит ее воспламенение с выделением энергии в виде тепла. Таким образом, топливом в реактивных двигателях могут быть только такие вещества, которые в результате химических реакций в двигателях (при возгорании) выделяют тепло, при этом образуя множество газов.

При возгорании совершается существенное разогревание смеси и деталей вокруг с объемным расширением. Собственно говоря, реактивные двигатели пользуются для продвижения управляемыми взрывами. Камеры сгорания в реактивных двигателях — это одни из самых горячих элементов (температурный режим в них может достигать до 2700 °С), и они требуют постоянного интенсивного охлаждения.

Турбореактивные двигатели функционируют несколько иначе. Так, газы, после камер сгорания, вначале проходят турбинами, которым отдают свою тепловую энергию. Это делается для того, чтобы привести в движение компрессоры, которые послужат для сжатия воздуха перед камерой сгорания. В любом случае, сопла остаются последними частями двигателей, через которые протекут газы. Собственно они и формируют непосредственно реактивную струю.

В сопла направляют холодный воздух, который нагнетается при помощи компрессоров, чтобы охлаждать внутренние детали двигателей. Реактивные сопла могут обладать различными конфигурациями и конструкциями исходя из разновидностей двигателей. Так, когда скорость проистекания должна быть выше скорости звука, тогда соплам придаются формы расширяющихся труб или же вначале суживающиеся, а далее расширяющиеся (так называемые сопла Лаваля). Только с трубами такой конфигурации газы разгоняются до сверхзвуковых скоростей, при помощи чего реактивные самолеты перешагивают «звуковые барьеры».

Исходя из того, задействуется ли в процессе работы реактивных двигателей окружающая среда, они подразделяются на основные классы воздушно-реактивных двигателей (ВРД) и ракетных двигателей (РД). Все ВРД являются тепловыми двигателями, рабочие тела которых образуются тогда, когда происходит реакция окисления горючих веществ с кислородом воздушных масс. Поступающие из атмосферы воздушные потоки составляют основу рабочих тел ВРД. Таким образом, аппараты с ВРД несут на борту источники энергии (топливо), но большая часть рабочих тел черпается из окружающей среды.

К аппаратам ВРД относятся:

  • Турбореактивные двигатели (ТРД);
  • Прямоточные воздушно-реактивные двигатели (ПВРД);
  • Пульсирующие воздушно-реактивные двигатели (ПуВРД);
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД).

Как работает реактивный двигатель

Воздух из окружающего пространства поступает на всас вентиляторов, которые подают его далее лопатки вращающегося с очень высокой скоростью турбокомпрессора. При этом поступающий воздух выполняет 2 функции:

  • окислитель для сгорания топлива;
  • охладитель агрегата.

В лопаточном аппарате турбокомпрессора воздух крепко уплотняется и под высоким давлением (от 3 МПа) подается в топливную смесительную камеру реактивного двигателя. Из рисунка 3 видно, что камера сгорания устроена таким образом, что смешение воздуха производится в несколько ступеней — на входе и в самой камере. Сюда же подводится топливо.

Хорошо перемешанная и в достаточном количестве обогащенная смесь воспламеняется, и в результате сгорания образуется тепловая энергия с выделением огромного объема газов. Последние приводят во вращение турбину горячей части двигателя, привод которой служит приводом турбокомпрессора.

В отдельных моделях реактивных двигателей турбины на выходе не монтируются. По большей части данное исполнение применяется в конструкции и принципе работы ракетного двигателя, где продукты сгорания после камеры попадают на выходные сопла.

Покидая горячую ступень, газы во всех реактивных аппаратах проходят через сопла. Эти элементы отличаются по своим конструкциям для разных моделей реактивных агрегатов и представляют собой «трубу», которая сначала сужается, а к выходу газов увеличивается в диаметре. За счет такой конструкции отработавшие газы увеличивают свою скорость до сверхзвука и образуют реактивную силу.

Температура горения в «сердце» реактивного агрегата достигает 2500°С, поэтому конструктивно требовательны в постоянстве охлаждения.

Электроракетный двигатель, сущность, устройство, принцип работы:

Электрический ракетный двигатель (электроракетный двигатель, ЭРД) – ракетный двигатель, принцип работы которого основан на преобразовании электрической энергии в направленную кинетическую энергию частиц. В таких двигателях в качестве источника энергии для создания тяги используется электрическая энергия бортовой энергоустановки космического аппарата.

По физике процессов электрический ракетный двигатель отличается от других разновидностей ракетных двигателей – от жидкостных и твердотопливных. Последние два используют химическую энергию.

Как и в обычном химическом ракетном двигателе в ЭРД также присутствует рабочее тело, которым выступает, как правило, газ (аргон, ксенон, аммиак, азот, гидразин и т.п.), иногда – жидкость, смеси жидкости и газа, жидкие металлы, пары металлов и твердые вещества (например, фторопласт), а также их смеси. Рабочее тело также истекает из сопла двигателя и создает тягу. В отличие от химического ракетного двигателя скорость истечения потока рабочего тела в ЭРД имеет высокое значение и составляет от 3 км/с и более. При этом верхняя граница скорости истечения частиц газа или другого рабочего тела неограниченна и по предварительным оценкам составляет порядка 210 км/с. Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. В настоящее время для электрических ракетных двигателей различных типов характерны следующие скорости истечения рабочего тела – от 10 до 60 км/с, электрическая мощность – от 0,8 до 7 КВт. КПД таких двигателей составляет порядка от 30 до 60%. Сам газ – рабочее тело (если в качестве рабочего тела используется газ) хранится в жидком виде.

В отличии от химическим двигателей электрические ракетные двигатели имеют исключительно высокий удельный импульс, составляющий до 100 км/с и более. Однако большой потребный расход энергии (1-100 кВт/Н тяги) и малое отношение тяги к площади поперечного сечения реактивной струи (не более 100 кН/м2) ограничивают максимальную целесообразную тягу ЭРД несколькими десятками ньютон. Недостатком электрических ракетных двигателей также является малое ускорение космического аппарата, которое составляет десятые или даже сотые доли ускорения свободного падения (g), что ограничивает применение таких двигателей только космическим пространством. Поэтому для запуска космического аппарата с Земли к другим планетам необходимо комбинировать обычные химические ракетные двигатели с электрическими.

Для ЭРД характерны малые размеры – порядка 0,1 м и более, а также масса порядка нескольких кг.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector