Солнце

Ваш комментарий к ответу:

Бывают ли звезды не входящие в созвездия?

На самом деле звезд в каждом созвездии гораздо больше, чем это упоминается в самых подробных справочниках, просто не все из них видны с Земли без бинокля или телескопа. Тут то и приходят на помощь созвездия – зная на каком участке неба находится наша “почти невидимая” звезда, мы всегда можем соотнести её с тем или иным созвездием.

Иными словами, “бездомных” звезд, то есть звезд не входящих в какое-либо созвездие для наблюдателя с Земли нет – все они честно поделены между 88 созвездиями, границы которых строго очерчены на небосклоне в 1922 году, решением Международного Астрономического Союза.

Правда, в этом правиле есть одно исключение. Да, есть одна единственная звезда, которая не входит ни в одно созвездие. Эта звезда – наше Солнце. Но, как такое могло произойти? Смотрите сами.

Вся небесная сфера вокруг нашей планеты расчерчена воображаемыми линиями – границами созвездий. Таким образом – все звезды также включены в состав одного из 88 участков звездного неба

Отличие между ними просто огромное, хотя на первый взгляд и не очень заметное

Анимация жизненного цикла протуберанца

1. Первоочередное и самое главное – звезды способны самостоятельно излучать свет и тепло, в отличие от планет, которые способны только отражать попадающие на них лучи света от других светил, являясь по своей сути темными телами.

2. Звезды обладают гораздо более высокими температурами поверхности, чем любая из известных на данный момент планет. Средние температуры их поверхностей колеблются от 2000 до 40000 градусов, не говоря уже о слоях расположенных ближе к центру космического тела, где температуры, возможно, достигают даже миллионов градусов.

Данные SDO, аппарата изучающего Солнце, за три года работы

3. Звезды значительно превосходят даже самые крупные планеты по своей массе.

4. Все планеты движутся по орбитам относительно своих светил, которые, в свою очередь, в тот же самый момент остаются совершенно неподвижными. Это происходит аналогично тому, как наша Земля вращается вокруг Солнца. Благодаря этому имеется возможность наблюдать у планет различные фазы точно так же, как и у Луны.

Полное Солнечное затмение, комбинированный снимок

5. Все планеты по своему химическому составу образованы как из твердых, так и из легких частиц, в отличие от звезд преимущественно состоящих только из легких элементов.

6. Планеты часто обладают одним или сразу несколькими спутниками, а вот звезды таковых «соседей» никогда не имеют. Но при этом отсутствие спутника это, конечно же, еще не факт, что данное космическое тело не является планетой.

7. На поверхностях абсолютно всех звезд обязательно происходят ядерные или термоядерные реакции, сопровождающиеся взрывами. В свою очередь, на поверхностях планет данные реакций не наблюдаются, ну если только в исключительных случаях, и то только на ядерных планетах и только очень-очень слабые ядерные реакции.

Атмосфера Солнца: фотосфера и хромосфера

Атмосфера — это газовая оболочка небесного тела, которая удерживается его гравитацией. Внешние слои звезд также называются атмосферой. Внешними считаются те слои, откуда хотя бы часть излучения может беспрепятственно, не поглощаясь более высокими слоями, уйти в окружающее пространство.

Атмосфера Солнца начинается на 200–300 км глубже видимого края солнечного диска. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более 1/3000 доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца. Плотность газов в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних ее слоях. Температура среднего слоя, к излучению которого чувствителен глаз человека, около 6000 К.

Особую роль в солнечной атмосфере играет отрицательный ион водорода, который представляет собой протон с двумя электронами. В земной природе такой ион не встречается. Это необычное соединение возникает в тонком внешнем, наиболее холодном слое фотосферы при «налипании» на нейтральные атомы водорода отрицательно заряженных свободных электронов, которые поставляются легко ионизуемыми атомами кальция, натрия, магния, железа и других металлов. При возникновении отрицательные ионы водорода излучают большую часть видимого света. Этот же свет ионы хорошо поглощают, из-за чего непрозрачность атмосферы с глубиной быстро растет. Поэтому видимый край Солнца и кажется нам очень резким.

Фотосфера постепенно переходит в более разреженные слои солнечной атмосферы — хромосферу и корону. Хромосфера (греч. «сфера цвета») названа так за свою красновато-фиолетовую окраску. Она видна во время полных солнечных затмений как клочковатое яркое кольцо вокруг черного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы. Температура этих хромосферных струй в два-три раза выше, чем в фотосфере, а плотность — в сотни тысяч раз меньше. Общая протяженность хромосферы — 10–15 тыс. км.

Солнечное затмение — хорошая возможность наблюдать хромосферу

Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в нее из конвективной зоны. Вещество нагревается примерно так же, как это происходит в микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной атмосферы, которые расположены выше хромосферы.

Часто во время затмений или при помощи специальных приборов над поверхностью Солнца можно наблюдать причудливой формы «фонтаны», «облака», «воронки», «кусты», «арки» и прочие ярко светящиеся образования из хромосферного вещества. Они бывают неподвижными или медленно изменяющимися, окруженными плавными изогнутыми струями, которые втекают в хромосферу или вытекают из нее, поднимаясь на десятки и сотни тысяч километров. Это самые грандиозные образования солнечной атмосферы — протуберанцы. При наблюдении в красной спектральной линии, излучаемой атомами водорода, они кажутся на фоне солнечного диска темными, длинными и изогнутыми волокнами. Протуберанцы имеют примерно ту же плотность и температуру, что и хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца. Спектр протуберанцев, как и хромосферы, состоит из ярких линий, главным образом водорода, гелия и кальция. Линии излучения других химических элементов тоже присутствуют, но они намного слабее.

Иногда нечто похожее на взрывы происходит в очень небольших по размеру областях атмосферы Солнца. Это так называемые хромосферные вспышки. Они длятся обычно несколько десятков минут. Во время вспышек в спектральных линиях водорода, гелия, ионизованного кальция и некоторых других элементов свечение отдельного участка хромосферы внезапно увеличивается в десятки раз. Особенно сильно возрастает ультрафиолетовое и рентгеновское излучение: порой его мощность в несколько раз превышает общую мощность излучения Солнца в этой коротковолновой области спектра до вспышки.

Внутреннее строение Солнца

Солнце — это огромный светящийся газовый шар, внутри которого протекают сложные процессы. Так же, как и другие звезды, Солнце светит благодаря идущим в его недрах термоядерным реакциям.

Источник энергии находится в центральной части светила — ядре. Плотность солнечного вещества растет к центру вместе с ростом давления и температуры, и в ядре звезды температура достигает 15 млн кельвинов. При таких параметрах среды начинает происходить реакция синтеза атомных ядер, когда ядра атомов легких элементов сливаются в ядро атома более тяжелого элемента, а масса нового ядра оказывается меньше, чем суммарная масса тех ядер, из которых оно образовалось. Остаток массы превращается в энергию, которую уносят частицы, освободившиеся в ходе реакции. Эта энергия почти полностью переходит в тепло.

Строение Солнца:
1. Ядро
2. Зона лучистого переноса
3. Конвективная зона
4. Фотосфера
5. Хромосфера
6. Корона
7. Солнечные пятна
8. Гранулы
9. Протуберанец

Основное вещество, составляющее Солнце, — водород, он и служит главным «топливом». На долю водорода приходится около 71% всей массы светила, почти 27% принадлежит гелию, а остальные 2% — более тяжелым элементам, таким как углерод, азот, кислород и металлы. В недрах Солнца из четырех атомов водорода образуется один атом гелия. На каждый грамм водорода, участвующего в реакции, приходится 6 ⋅ 1011 Дж выделяющейся энергии. Такого количества энергии достаточно, чтобы нагреть от температуры 0°С до точки кипения 1000 м3 воды.

Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос, конвекция и теплопроводность. Теплопроводность не играет большой роли в энергетических процессах на Солнце и звездах, тогда как лучистый и конвективный переносы очень важны.

Сразу вокруг ядра начинается зона лучистого переноса энергии, в которой энергия распространяется через поглощение и излучение веществом порций света — квантов.

Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. В целом процесс этот очень медленный. Чтобы квантам добраться от центра Солнца до его видимой зоны — фотосферы, необходимы многие сотни тысяч лет, так как, переизлучаясь, кванты все время меняют направление, почти столь же часто двигаясь назад, как и вперед. В процессе переизлучения кванты меняют и свою природу.

Протонно-нейтронная ядерная реакция

На своем пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передается уже не излучением, а конвекцией. Конвекция может происходить в жидких и газообразных средах. На Солнце в области конвекции огромные потоки горячего газа поднимаются вверх, где отдают свое тепло окружающей среде, а охлажденный солнечный газ опускается вниз. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца — фотосферы, где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда все же проникают горячие потоки из более глубоких, конвективных слоев. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции.

Солнце – это планета или звезда?

Солнце – это звезда. Есть ряд критериев, согласно которым небесное тело может быть отнесено к разряду звезд или планет. Солнце соответствует именно тем характеристикам, которые присущи звездам.

Во все времена значение Солнца было очень велико, а его изучение и исследование всегда были главными направлениями в астрономии. Солнце – это самый большой объект Солнечной системы. К тому же Солнце занимает 99, 8% всей массы системы.

Абсолютно все космические тела Солнечной системы вращаются именно вокруг Солнца. Солнце намного больше Земли. Это относится и к его массе, и к его размерам. Диаметр Солнца составляет 1,3 миллиона километров, его вес – 1.989*10^30 килограммов, температура на его поверхности составляет 5800К, а период оборачивания Солнца вокруг своей оси составляет 25,4 дней.

На Солнце можно наблюдать протекание очень сложных процессов. К примеру, ученый Галилей еще в далеком 1610 году, наблюдая за Солнцем в телескоп, увидел на его поверхности темные пятна. С их помощью он сумел определить время и период оборачивания Солнца. Поверхность Солнца нельзя назвать спокойной, так как она постоянно бурлит, и при этом все вещества, из которых состоит Солнце, то опускаются, то поднимаются. Поэтому вся солнечная поверхность как будто покрыта зернами и гранулами.

Следует отметить, что размер этих зерен и гранул колеблется от 1 до 2 тысяч километров, а период их существования составляет всего лишь несколько минут. Солнечные пятна, открыты Галилеем, намного больше гранул – несколько сотен тысяч километров. К тому же они более устойчивые, чем гранулы, и могут просуществовать приблизительно месяц. Для Солнечных пятен характерен темный оттенок, а их температура составляет 3500К. Количество солнечных пятен возрастает в период солнечной активности, когда можно понаблюдать и за солнечными вспышками.

Солнечные вспышки – это очень сильные выбросы солнечной энергии с его поверхности. Они сопровождаются не только усиленным излучением некоторых участков Солнца, но и активными выбросами частиц, которые могут долетать до магнитного поля Земли, вызывая своим прилетом так званое возмущение, которое плохо сказывается на здоровье многих людей и работе приборов.

Солнце – планета гигант – состоит из внешнего светящегося слоя фотосферы, разреженного горячего газового слоя хромосферы и разреженной горячей короны. Температура в хромосфере достигает десятки тысяч градусов. Корону Солнца увидеть можно только при полном солнечном затмении.

Существует также такое понятие, как солнечный ветер. Это частицы, которые покидают Солнце и устремляются в пространство космоса. Солнечный ветер присущий Солнцу даже при великой солнечной силе гравитации. О существовании солнечного ветра многие ученые долго сомневались. Однако в 1959 году солнечный ветер был зафиксирован космическими аппаратами. До верхних слоев Земли достигают лишь отдельные частицы Солнечного ветра, так как основной поток частиц останавливается благодаря земельному магнитному полю. Частицы солнечного ветра, попадая в верхние слоя Земли, вызывают северное сияние.

Как установили многие современные ученые, источником солнечной энергии есть термоядерные реакции, в процессе которых легкие химические элементы превращаются в тяжелые элементы. Сегодня это превращение водорода в гелий. Водород составляет на сегодняшний день 70% всей массы Солнца, а гелий – лишь 28%. Эти термоядерные реакции могут протекать лишь при высокой температуре, которая находится в центре самого Солнца.

По мнению ученых, Солнце – это звезда, которая отличается от остальных звезд тем, что звезды находятся на большем расстоянии от Земли, чем само Солнце. Это было доказано с помощью спектрального анализа солнечного излучения и изучения его состава.

Видео: как устроено Солнце

Что находится внутри Солнца

Согласно современным расчетам температура в недрах Солнца достигает 15 – 20 миллионам градусов Цельсия, плотность вещества звезды достигает 1,5 грамма на кубический сантиметр.

Источник энергии Солнца – постоянно идущая ядерная реакция, протекающая глубоко под поверхностью, благодаря которой и поддерживается высокая температуру светила. Глубоко под поверхностью Солнца водород превращается в гелий в следствии ядерной реакции с сопутствующим выделением энергии.
“Зона ядерного синтеза” Солнца называется солнечным ядром и имеет радиус примерно 150—175 тыс. км (до 25 % радиуса Солнца). Плотность вещества в солнечном ядре в 150 раз превышает плотность воды и почти в 7 раз – плотность самого плотного вещества на Земле: осмия.

Ученым известны два вида термоядерных реакций протекающих внутри звезд: водородный цикл и углеродный цикл. На Солнце преимущественно протекает водородный цикл, который можно разбить на три этапа:

  • ядра водорода превращаются в ядра дейтерия (изотоп водорода)
  • ядра водорода превращаются в ядра неустойчивого изотопа гелия
  • продукты первой и второй реакции связываются с образованием устойчивого изотопа гелия (Гелий-4).

Каждую секунду в излучение превращаются 4,26 миллиона тонн вещества звезды, однако по сравнению с весом Солнца, даже это невероятное значение так мало, что им можно пренебречь.

Внутреннее строение недр Солнца: ядро, зона конвекции, фото и хромосфера, солнечная корона

Выход тепла из недр Солнца совершается путем поглощения электромагнитного излучения, приходящего снизу и его дальнейшего переизлучения.

Ближе к поверхности солнца излучаемая из недр энергия переносится преимущественно в зоне конвекции Солнца с помощью процесса конвекции – перемешивании вещества (теплые потоки вещества поднимаются ближе к поверхности, холодные же опускаются).
Зона конвекции залегает на глубине около 10% солнечного диаметра и доходит почти до поверхности звезды.

Влияние Солнца на Землю

Солнце — главный, хотя и не единственный, двигатель происходящих на земле процессов. Оно освещает и согревает нашу планету, без чего была бы невозможна жизнь на Земле не только человека, но даже микроорганизмов. Оно посылает на Землю электромагнитные волны всевозможной длины — от многокилометровых радиоволн до чрезвычайно коротковолновых гамма-лучей.

Только очень малая часть заряженных частиц из межпланетного пространства попадает в атмосферу Земли, все остальные отклоняет или задерживает ее геомагнитное поле. Но энергии этих частиц достаточно для того, чтобы вызвать полярные сияния и возмущения магнитного поля нашей планеты.

Полярные огни над Шпицбергеном

Окрестностей Земли достигают заряженные частицы разной энергии — как высокой (солнечные космические лучи), так и низкой и средней (потоки солнечного ветра, выбросы от вспышек). Наконец, Солнце испускает мощный поток элементарных частиц — нейтрино. Однако их воздействие на земные процессы пренебрежимо мало: для этих частиц земной шар прозрачен, так что они свободно пролетают сквозь него.

Солнечные космические лучи в основном состоят из протонов, ядер атомов гелия и электронов с энергией 106 –109 электронвольт (эВ). Наиболее энергичные из этих частиц преодолевают расстояние от Солнца до Земли, равное 150 млн км, всего за 10–15 мин. Основным источником солнечных космических лучей служат хромосферные вспышки.

Как и рентгеновское излучение, солнечные космические лучи не доходят до поверхности Земли, но могут ионизовать верхние слои ее атмосферы, что сказывается на устойчивости радиосвязи между отдаленными пунктами. Но действие частиц этим не ограничивается. Быстрые частицы вызывают сильные токи в земной атмосфере, приводят к возмущению магнитного поля нашей планеты и даже влияют на циркуляцию воздуха в атмосфере.

Наиболее ярким и впечатляющим проявлением бомбардировки атмосферы солнечными частицами являются полярные сияния. Это свечение в верхних слоях атмосферы, имеющее либо размытые (диффузные) формы, либо вид корон или занавесей (драпри), состоящих из многочисленных отдельных лучей. Сияния обычно бывают красного или зеленого цвета: именно так светятся основные составляющие атмосферы — кислород и азот — при облучении их энергичными частицами. Зрелище бесшумно возникающих красных и зеленых полос и лучей, беззвучная игра цветов, медленное или почти мгновенное угасание колеблющихся занавесей оставляют незабываемое впечатление.

Подобные явления лучше всего видны вдоль овала полярных сияний, расположенного между 10° и 20° широты от магнитных полюсов. В период максимумов солнечной активности сияния можно наблюдать в более низких широтах. Частота и интенсивность полярных сияний достаточно четко следуют солнечному циклу: в максимуме солнечной активности редкий день обходится без сияний, а в минимуме они могут отсутствовать месяцами. Наличие или отсутствие полярных сияний, таким образом, служит неплохим показателем активности Солнца.

Оюна

Когда Солнце окончательно сгорит?

Последовательность ядерного синтеза внутри звезд

Смерть любой звезды, находящейся в стадии красного гиганта, не за горами. У Солнца будет еще достаточно температуры и давления, чтобы начать следующий этап ядерного синтеза: из гелия, который в этот раз будет топливом, синтезируется углерод. Этот этап займет около ста миллионов лет – до того момента, когда выгорит весь гелий. В конце оболочка станет нестабильной, и звезда начнет усиленно пульсировать. За весьма короткий промежуток времени эти пульсации выбросят в открытый космос большую часть атмосферы Солнца.

Когда от атмосферы недавнего гиганта ничего не останется, вместо большой и яркой звезды в пространстве повиснет белый карлик – небольшое, размером с Землю, светило из чистого карбона, по массе равное звезде. Алмаз размером с нашу планету будет еще долго светиться тепловым излучением, но этого недостаточно для ядерного синтеза. Со временем он остынет до температуры окружающей среды – пары градусов выше абсолютного нуля.

Так закончится жизнь нашего Солнца – одиноким алмазным постаментом.

История исследований Солнца — для детей

Ребятам будет интересно узнать как можно больше информации про Солнце, потому что это единственная звезда Солнечной системы, от которой зависит жизнь на нашей планете. Поэтому изучение Солнца проводят до сих пор. Необходимо объяснить детям, что еще древние люди понимали, какую важную роль играют в нашем существовании Солнце и Луна. Из-за этого нашли множество наскальных рисунков, а также памятников, которые отображали движение небесных тел. Тогда многие свято верили, что именно Солнце вращается вокруг нас. В 150 г. до н. э. появилась даже геоцентрическая модель, созданная Птолемеем – ученым из Древней Греции. Но Николай Коперник рассмотрел эту теорию и в 1543 году предложил гелиоцентрическую модель (Солнце служило центральной точкой). И в 1610 году его мысли подтвердились, так как Галилео Галилей обнаружил спутники Юпитера, демонстрируя, что мы не являемся центром, так как не все вокруг оборачиваются вокруг нас.

Конечно, человечеству всегда хотелось узнать больше о работе главной звезды. Поэтому они начали использовать ракеты и телескопы с Земли. НАСА отправило 8 орбитальных обсерваторий, которые представляли собою Орбитальную солнечную обсерваторию (1962-1971 гг). Успеха добились 7 из них. Именно им удалось проанализировать звезду в ультрафиолетовых и рентгеновских длинах волн. Кроме того, были рассмотрены снимки супергорячей короны.

НАСА и Европейское космическое агентство решили объединиться и отправили аппарат Улисс в 1990 году, который должен был исследовать полярные районы. Интересно, что аппарату НАСА Genesis удалось добыть образцы солнечного ветра. Первые фото Солнца в 3D были получены в 2007 году от STEREO НАСА (изучение активности Солнца).

На этой серии снимков, сделанных космическим аппаратом SOHO, показана траектория движения кометы, обогнувшей Солнце

Если выбирать по важности, то сейчас первенство отведено Солнечной и гелиосферной обсерватории (SOHO). Ее специально создали, чтобы изучать солнечный ветер

Кроме того, в список интересующих вопросов входят внешние и внутренние слоя звезды. Обсерватории удалось найти корональные волны, измерить ускорение ветра, отобразить карту пятен на подповерхностном уровне, отыскать солнечные торнадо, более 1000 комет, а также улучшить умение прогнозировать погодные условия на Земле.

Следует также вспомнить, что Обсерватория солнечной динамики (SDO) НАСА получила сведения о неизвестном материале, вытекающем недалеко от солнечных пятен, а также разглядеть удивительные и масштабные поверхностные события. Кроме того, с ее помощью ученые смогли впервые измерить в высоком разрешении вспышки в широком диапазоне экстремальных длин волн ультрафиолетового излучения.

Помните, что рассказ о Солнце должен увлечь ребенка, поэтому воспользуйтесь фото и рисунками сайта, а также интересными фактами о звезде. Здесь вы сможете изучить всю Солнечную систему в увлекательной форме совершенно бесплатно.

Планеты

Значение Солнца в астрологии

Солнце – самая дневная из планет, это означает, что оно может лишь выражать свою истинную природу. Солнце совершенно неспособно ни на какой обман или притворство. Кроме того, его энергия самая мужская во всем гороскопе. Оно единонаправленно и желает выразить себя концентрированно и открыто. Солнце – самый яркий представитель Ян-планет в карте. Оно эмоционально и дружелюбно, но совсем не чувственно.

Если сосредоточенная природа Солнца дает нам возможность приступить к действию – в действительности, к любому действию, – то недостает Солнцу способности видеть будущее, приспособляемости, гибкости. Солнце действует в сфере абсолютного и не способно взаимодействовать с неопределенностью.

Если провести аналогию положения Солнца как звезды нашей солнечной системы с его положением в гороскопе, то последнее покажет, где и каким образом мы хотим быть звездой. Солнце указывает пути, какими мы хотим завоевать известность, что мы хотим выразить и за что хотим получить признание. Глядя на положение Солнца, мы изучаем мотивы к самовыражению. Почему и как – покажет наше Солнце.

Солнце желает иметь власть и всегда ищет пути к более яркому самовыражению. Оно воплощает нашу цельность и является ключом к пониманию, как все остальные составляющие нашей личности, все наши многочисленные стороны соединяются друг с другом, чтобы образовать целое и завершенное существо. Повторюсь, запомните: Солнце – будучи абсолютно дневным – может лишь выражать свою подлинную природу. Сияя ярче и интенсивнее, оно будет противостоять любым попыткам сделать из него то, чем оно не является, и будет продолжать сопротивление, пока не станет невозможным отвергать его истинный характер.

Чтобы жить в здравии и счастье, мы должны обязательно «подпитывать» свое Солнце! Нужно делать осознанные усилия для поисков своего опыта, который придаст сил нашему Солнцу. В большой степени это означает, что мы обязаны внести радость в свою жизнь – насколько возможно, в каждый ее день. Любое действие, производя которое мы действительно получаем наслаждение, «питает» наше Солнце, заряжает нас на достаточно ощутимом физически уровне.

Рассмотрим, какую роль играет Солнце в гороскопе рождения. Из таблиц (эфемерид) следует взять цифры его положения при рождении и аспекты, которые оно образует с планетами в гороскопе при ежедневном поступательном движении. Аспекты эти заранее вычислены в большинстве эфемерид.

Какие события можно предсказать по положению Солнца в гороскопе рождения

Каждый день после рождения равен одному градусу. Поэтому следует только рассчитать число дней, прошедших с момента рождения, до дня, когда Солнце образует аспект, таким образом получим возраст, когда своими аспектами оно окажет на человека влияние.

Планеты вместе с Солнцем двигаются по Зодиаку с разной скоростью: Солнце — 2,5 минуты в час, или один градус в день; Луна — 32 мин в час, или 13 градусов в день; Нептун — 2 мин в день; Уран — 3 мин в день, Сатурн — около 5 мин в день; Венера — 72 мин в день, или 3,5 мин в час; Меркурий — 84 мин в день, или 3,5 мин в час в прямом направлении движения планет.

Солнце в гороскопе рождения. При своем движении по Зодиаку планеты образуют аспекты с меридианом, Асцендентом, Солнцем и Луной (в гороскопе рождения это отражается углами градусов и символами этих углов). Это называется второстепенными направлениями и совместно с аспектами Солнца после рождения составляет систему управления судьбой человека, по мнению арабских астрологов.

Так называемое прогрессивное движение Луны после рождения определяет по сравнению с Солнцем более короткие и менее значительные периоды удач и неудач. Причем один день движения Луны равняется году жизни, а два часа — одному месяцу.

Что такое звезда

Для того, чтобы узнать побольше о Солнце, для начала необходимо разобраться, что из себя представляют звезды. Этим термином обозначаются газовые шары значительных размеров, в ядре которых происходят процессы термоядерного синтеза. За счет этого они выделяют огромное количество энергии и являются одними из самых ярких объектов во Вселенной.

Образуются звезды из
скоплений водорода, гелия и межзвездной пыли. 
Под воздействием сильнейшего гравитационного взаимодействия облако
сжимается все сильней до тех пор, пока не наберет массу, достаточную для
запуска термоядерной реакции гелиевого синтеза. 

Каждая звезда проходит
целый ряд эволюционных преобразований от момента рождения до гибели. Чем она старше,
тем больше ее диаметр и масса и меньше запасов водородного топлива в ядре. Солнце
и подобные ему проходят следующие стадии развития:

  • Переменная звезда типа Т Тельца – молодая, источником энергии которой является не реакция термоядерного синтеза, а гравитационное сжатие.
  •  Желтый карлик (нынешнее состояние нашего Светила) – небольшая звезда с большими запасами водорода.
  • Красный гигант – стареющая звезда с высокой светимостью, большими размерами, но малыми запасами водорода в ядре. Она холоднее Солнца и излучает в десятки раз меньше энергии. После полного исчерпания водорода в ядре разрастается за счет сжигания вещества в окружающем пространстве, что приводит к вырождению ядра и гелиевой вспышке.
  • Белый карлик – конечная эволюционная стадия солнцеподобных объектов. Диаметром в сотни раз меньше нашего Светила, но в миллионы раз большей плотности.

Месторасположение звезды Солнце в Галактике

Если для Солнечной системы наша звезда является главным и центральным объектом, определяющим движение планет и других космических объектов, то в масштабах галактики Солнце является всего лишь маленькой пылинкой.

Позиция, которую занимает звезда Солнце в масштабах галактики Млечный Путь

Галактика Млечный Путь представляет собой плоский спиралевидный диск диаметром 100 тыс. – 120 тыс. световых лет. Толщина этого колоссального образования составляет 1000 световых лет. После того как ученым удалось более детально изучить строение родной галактики, оказалось, что у нее имеется четыре огромных рукава. В одном из ответвлений рукава Стрельца и располагается Солнце со своей звездной свитой. Ориентировочно звезда находится на расстоянии 26 тыс. световых лет от центра галактики.

По мнению ученых, эта галактическая область отличается достаточным спокойствием, чего не скажешь о центральных областях Млечного Пути. Звездные скопления, в которых пребывает родная для нас звезда, не достаточно плотны. Силы гравитации на данном участке Млечного Пути действуют сбалансировано и размерено, о чем свидетельствует довольно спокойное существование Солнечной системы на протяжении миллиардов лет. В масштабах космоса Солнце  — сравнительно небольшое небесное тело. Звезда относится к классу желтых карликов, которым уготована спокойная и размеренная долгая звездная жизнь. Что касается видимого спектра, то Солнце относится к звездам спектрального класса G2V.

Солнце в окружении других небесных объектов, которые населяют рукава Стрельца-Лебедя

На детальной модели хорошо видны окрестности нашей звезды и ее окружение. Ближайшей соседкой Солнца является красный карлик Проксима, входящий в тройную звездную систему Альфа Центавра. Лететь до этой звезды придется четыре световых года. Хорошо знакомый астрономам Сириус расположился в два раз дальше, в 8 световых годах от нашей Солнечной системы. Ближайшей крупной звездой сегодня считается красный сверхгигант Бетельгейзе, который находится от нас на расстоянии 570 световых лет.

Скоростные и орбитальные параметры звезды Солнце следующие:

  • скорость движения Солнца вокруг центральной части галактики Млечный Путь составляет 217 км/с;
  • период полного оборота нашей звезды вокруг центра галактики составляет 226 млн. лет;
  • за время своего существования Солнце только 20 раз совершило полный оборот вокруг центра галактики.

Что касается возраста Солнца, то наша звезда сейчас пребывает в середине главной последовательности, находясь в зрелом возрасте. На финальном этапе своей карьеры, через 4-5 млрд. лет Солнце превратится в красный гигант, который будет медленно затухать и станет в дальнейшем белым карликом. Вероятно, что через десятки млрд. лет Вселенная озарится вспышкой сверхновой, после которой со звездной карты исчезнет звезда под именем Солнце.

Месторасположение Солнца в главной последовательности, соответствующее спектральному классу светимости G

Расположение Солнца в галактике

Нам крупно повезло, так как Солнечная система расположена в обитаемой зоне галактики Млечный Путь, что способствует возникновению жизни по целому ряду причин. В нашей галактике имеются 4-е главные спиральные рукава. Вот на краю одного из них – рукаве Ориона и пребывает в настоящее время Солнце.

Это окраина, и расстояние от неё до центра составляет около 8-и тысяч парсеков (1 парсек = 3,2 световых года). Поэтому последние 4,5 млрд. лет мы живём достаточно спокойно, не подвергаясь галактическим катаклизмам. Такими данными наука стала располагать благодаря исследованиям двух астрономов: Уильяма Гершеля и Харлоу Шепли. Последний смог создать детальную карту нашей галактики. Оказывается, Солнечная система вращается вокруг галактического центра, со скоростью более 200 км/сек. И успела за время своего существования обернуться вокруг него 30 раз.

Солнце и Земля

Влияние светила на нашу планету бесконечно огромно. И это не преувеличение. Земля вращается вокруг Солнца, как бы подставляя ему свои «бока», что обуславливает изменения времён года и переход день-ночь.

Мало того, за счёт излучаемого тепла и света возникла и продолжает существовать жизнь во всём многообразии. Ежегодно и «совершенно бесплатно» каждый квадратный километр поверхности Земли получает 342 Вт энергии. Стоит только посмотреть тариф, умножить эту цифру на количество часов в году, как сразу становится ясно, насколько мы богаты.

Но это лишь малая доля безмерных богатств нашей планеты, щедро одариваемой Солнцем. Именно под воздействием его лучей идёт беспрерывный рост растений, насыщение атмосферы столь необходимым для дыхания кислородом, бесконечная дезинфекция окружающей среды, и оздоровление человеческого организма.

Мы научились вырабатывать электроэнергию, используя ресурсы планеты, созданные опять же благодаря Солнцу. И можно быть абсолютно уверенными в том, что пользуясь его благами в ближайшие несколько миллиардов лет, человечество достигнет космических высот и вселенского уровня развития.

Солнце в мифологии

Культ яркого золотого диска, дарящего свет и тепло, был широко распространён по всему Земному шару в древности. Ему поклонялись, обожествляли, молились, делали бесконечные жертвоприношения. Солнце воспевали и славили.

Центральный бог целого ряда пантеонов древности – не что иное, как наше небесное светило. Не удивительно, что оно стало символом могущества, богатства, власти. А его земным олицетворением всегда было золото.

Солнце в мифологии превращали в живое существо, именно от него вели свой род древние цари и правители. Более того, земные жители испытывали невероятный страх и ужас перед Солнцем, всячески боясь его гнева и погасания. Древние народы Америки приносили жертвы, чтобы умилостивить верховное божество. А греки создали красивую космогоническую легенду о Фаэтоне.

И в наши дни проявляются отголоски былого: то вдруг появится сообщение о взрыве любимой звезды, то её пятна начнут разрастаться до небывалых размеров. Такие страхи невероятно живучи и устойчивы и часто попадают на «благодатную почву слепых верований» несведущих обывателей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector