Ядерная бомба

Немецкие ученые и лаборатории на территории СССР в послевоенные годы

Из Берлина перевезли урановую центрифугу и другое оборудование, а также документы и реактивы лаборатории фон Арденне и Кайзеровского института физики. В рамках программы создали лаборатории «А», «Б», «В», «Г», которые возглавили немецкие ученые.

Руководителем лаборатории «А» был барон Манфред фон Арденне, который разработал способ газодиффузионной очистки и разделения изотопов урана в центрифуге.

За создание такой центрифуги (только в промышленных масштабах) в 1947 году он получил Сталинскую премию. В то время лаборатория располагалась в Москве, на месте знаменитого Курчатовского института. В команде каждого немецкого ученого было 5-6 советских специалистов.

Позже лаборатория «А» была вывезена в Сухуми, где на ее базе создан физико-технический институт. В 1953-м барон фон Арденне второй раз стал Сталинским лауреатом.

Лабораторию «Б», проводившую эксперименты в области радиационной химии на Урале, возглавлял Николаус Риль – ключевая фигура проекта. Там, в Снежинске, с ним работал талантливый русский генетик Тимофеев-Ресовский, с которым они дружили еще в Германии. Успешное испытание атомной бомбы принесло Рилю звезду Героя Социалистического Труда и Сталинскую премию.

Исследованиями лаборатории «В» в Обнинске руководил профессор Рудольф Позе – пионер в сфере ядерных испытаний. Его команде удалось создать реакторы на быстрых нейтронах, первую в СССР АЭС, проекты реакторов для подводных лодок.

На базе лаборатории позже был создан Физико-энергетический институт имени А.И. Лейпунского. До 1957 года профессор работал в Сухуми, потом – в Дубне, в Объединенном институте ядерных технологий.

Лабораторию «Г», размещенную в сухумском санатории «Агудзеры», возглавлял Густав Герц. Племянник знаменитого ученого XIX века получил известность после серии экспериментов, подтвердивших идеи квантовой механики и теорию Нильса Бора.

Результаты его продуктивной работы в Сухуми применили при создании промышленной установки в Новоуральске, где в 1949 году сделали начинку первой советской бомбы РДС-1.

Урановая бомба, которую американцы сбросили на Хиросиму, была пушечного типа. При создании РДС-1 отечественные физики-атомщики ориентировались на Fat Boy – «бомбу Нагасаки», сделанную из плутония по имплозивному принципу.

В 1951 году за плодотворную деятельность Герц был удостоен Сталинской премии.

Немецкие инженеры и ученые жили в комфортабельных домах, из Германии они перевезли свои семьи, мебель, картины, их обеспечили достойной зарплатой и спецпитанием. Был ли у них статус пленных? По мнению академика А.П. Александрова, активного участника проекта, пленными в таких условиях были они все.

Получив разрешение вернуться на родину, немецкие специалисты дали подписку о неразглашении своего участия в советском атомном проекте в течение 25 лет. В ГДР они продолжили работу по специальности. Барон фон Арденне был дважды лауреатом немецкой Национальной премии.

Профессор возглавлял Физический институт в Дрездене, который создали под эгидой Научного совета по мирному применению атомной энергии. Руководил Научным советом Густав Герц, получивший Национальную премию ГДР за свой трехтомный учебник по атомной физике. Здесь же, в Дрездене, в Техническом университете, трудился и профессор Рудольф Позе.

Участие в советском атомном проекте немецких специалистов, так же как и достижения советской разведки, не уменьшают заслуги советских ученых, которые своим героическим трудом создали отечественное атомное оружие. И все же без вклада каждого участника проекта создание атомной промышленности и ядерной бомбы растянулось бы на неопределенны

См. также

Кто свернул свои ядерные программы

Ряд стран добровольно, а некоторые и под давлением, либо свернули, либо на этапе планирования развития ядерной программы отказались от нее. Так, например, Австралия в 1960-х годах после предоставления своей территории для ядерных испытаний Великобритании решилась на строительство реакторов и постройку завода по обогащению урана. Однако после внутриполитических дебатов программу свернули.

Бразилия после неудачного сотрудничества с ФРГ в области разработки ядерного оружия в 1970−90-х годах вела «параллельную» ядерную программу вне контроля МАГАТЭ. Велись работы по добыче урана, а также по его обогащению, правда, на лабораторном уровне. В 1990—2000-х годах Бразилия признала существование такой программы, а позже она была закрыта. Сейчас страна обладает ядерными технологиями, которые при принятии политического решения позволят быстро приступить к разработке оружия.

Аргентина начала свои разработки на волне соперничества с Бразилией. В 1970-х программа получила наибольший импульс, когда к власти пришли военные, однако уже к 1990-м администрация сменилась на гражданскую. Когда программу свернули, по оценкам экспертов, оставалось около года работ для достижения технологического потенциала создания ядерного оружия. В итоге в 1991 году Аргентина и Бразилия подписали соглашение об использовании атомной энергии исключительно в мирных целях.

Ливия при Муаммаре Каддафи после неудачных попыток приобрести готовое оружие у Китая и Пакистана решилась на свою ядерную программу. В 1990-х годах Ливия смогла закупить 20 центрифуг для обогащения урана, однако недостаток технологий и квалифицированных кадров не позволил создать ядерное оружие. В 2003 году после переговоров с Великобританией и США Ливия свернула свою программу создания оружия массового уничтожения.

Египет отказался от ядерной программы после аварии на Чернобыльской АЭС.

Тайвань вел свои разработки 25 лет. В 1976 году под давлением МАГАТЭ и США официально отказался от программы и демонтировал установку по выделению плутония. Однако позже возобновил ядерные исследования тайно. В 1987 году один из руководителей Чжуншаньского института науки и техники бежал в США и рассказал о программе. В итоге работы были остановлены.

В 1957 году Швейцария создала Комиссию по изучению возможности обладания ядерным оружием, которая пришла к выводу, что оружие необходимо. Рассматривались варианты покупки оружия у США, Великобритании или СССР, а также разработки его с Францией и Швецией. Однако к концу 1960-х ситуация в Европе успокоилась, и Швейцария подписала Договор о нераспространении ядерного оружия. Потом еще некоторое время страна поставляла ядерные технологии за рубеж.

Швеция вела активные разработки с 1946 года. Ее отличительной чертой являлось создание ядерной инфраструктуры, руководство страны ориентировалось на реализацию концепции замкнутого ядерного топливного цикла. В итоге к концу 1960-х Швеция была готова к серийному производству ядерных боеголовок. В 1970-х ядерную программу закрыли, т.к. власти решили, что страна не потянет одновременное развитие современных видов обычных вооружений и создание ядерного арсенала.

Южная Корея начала свои разработки в конце 1950-х годов. В 1973 году Комитет по исследованию вооружений разработал план на 6−10 лет по созданию ядерного оружия. Велись переговоры с Францией по строительству завода по радиохимической переработке облученного ядерного топлива и выделению плутония. Однако Франция отказалась от сотрудничества. В 1975 году Южная Корея ратифицировала Договор о нераспространении ядерного оружия. США обещали предоставить стране «ядерный зонтик». После того, как президент Америки Картер заявил о намерении вывести войска из Кореи, страна тайно возобновила ядерную программу. Работы продолжались до 2004 года, пока не стали достоянием общественности. Южная Корея свернула свою программу, но на сегодняшний день страна способна в короткие сроки осуществить разработку ядерного оружия.

Современная ситуация

См. также: Ядерный арсенал США и Стратегические ядерные силы Российской Федерации

По состоянию на август 2009 года Министерство обороны США располагает примерно 5,6 тыс. боезарядами, как готовыми к установке, так и уже размещёнными на носителях.

В апреле 1995 г. ядерные боеприпасы были вывезены в Россию из Казахстана, к июню 1996 г. — с Украины и к ноябрю 1996 г. — из Белоруссии.

По состоянию на январь 2009 года в составе стратегических ядерных сил (СЯС) России находилось 634 стратегических носителя, способных нести 2825 ядерных боезарядов. По состоянию на июль 2009 года в составе стратегических ядерных сил (СЯС) России находилось уже 608 стратегических носителя, способных нести 2683 ядерных боезаряда. Российские ядерные боеприпасы находятся в ведении 12-го главного управления Министерства обороны Российской Федерации.

Согласно подписанному в мае 2002 года договору, США и Россия должны к 31 января 2012 года уменьшить свои ядерные арсеналы на две трети — до уровня 1700—2200 боеголовок у каждой стороны.
Ядерным оружием обладают 9 стран: США, Россия, Великобритания, Франция, Китай, Индия, Пакистан, Израиль(предположительно)и Северная Корея. Из них только пять стран подписали Договор о нераспространении ядерного оружия (США, Россия, Великобритания, Франция и Китай).
Более подробную информацию можно узнать на странице Ядерный клуб.

Договор о нераспространении ядерного оружия одобрен Генеральной Ассамблеей ООН 12 июня 1968 г., открыт для подписания 1 июля 1968 г. в Москве, Вашингтоне и Лондоне. Договор вступил в силу 5 марта 1970 г. после сдачи ратификационных грамот на хранение. Ратифицирован СССР 24 ноября 1969 г. Участниками Договора являются 190 государств. Вне ДНЯО остаются Индия, Пакистан, Израиль. О выходе из ДНЯО заявила КНДР.

Удобство в обслуживании

Как легально не пойти в армию

БРДМ-2 ТТХ, Видео, Фото, Скорость, Броня

Объективные проблемы

Идти по самому простому пути — сделать бомбу в десять раз больше, а значит и в десять раз мощнее — было бессмысленно. Первая советская атомная бомба, испытанная ещё в 1949 году, весила более 4,6 тонны. Но в то время в стране не имелось самолёта, который мог бы доставить это оружие к месту назначения. И было ясно, что создать в обозримое время аппарат, способный нести 44-тонный заряд, не получится. К слову, лишь в 1954 году под руководством авиаконструктора Андрея Туполева был создан серийный бомбардировщик Ту-95, ставший основой для самолёта, способного сбросить ядерную бомбу в указанной точке.


Бомбардировщик Ту-95. (wikipedia.org)

Задача, поставленная перед физиками, включёнными в группу по разработке конструкции термоядерной бомбы, казалась поначалу почти неразрешимой. При этом помимо трудностей с теорией имелись и сугубо практические проблемы. Каждое новое испытание атомного оружия требовало колоссальных ресурсов и продолжительной подготовки. Поэтому возможности проверять любую интересную идею на практике просто не было.

«Давай деньги, деньги давай!»

Тридцатые годы были временем невероятного прогресса как техники, так и науки. В Англии открыли нейтрон и позитрон, в СССР — излучение Черенкова. Однако наука стоила дорого. Грамм радия — полтора миллиона рублей. Ускоритель — десятки миллионов. Поэтому СССР в год получал целых 10-15 грамм радия с изотопами.

Игорь Курчатов у высоковольтной установки

В марте 1938 года виднейшие физики-ядерщики СССР — Иоффе, Курчатов, Алиханов и ещё четыре строки фамилий, написали письмо товарищу Молотову, главе Совнаркома СССР. Тем в письме было три: 1)а вот при царизме этим не занимались», 2)а вот на Западе уже…», поэтому 3)дайте денег».

Молотов спросил по инстанциям:Что ответить?». Шестерёнки советской государственной машины завертелись, деньги пошли.

Про то, что атомом можно жахнуть в виде бомбы, писал ещё Герберт Уэллс в 1914 году. Боевую радиоактивность придумал фантаст Александр Богданов вКрасной звезде» — 1908. И ещё примерно полсотни фантастов того времени. А в жизни деление урана открыли только в декабре 1938 года(с публикацией в январе 1939-го) Отто Ган и Фриц Штрассман в Германии.

Циклотрон,Техника-молодёжи», 1937 год

Третьего октября 1939 года в Президиум Академии наук СССР опять же пишут письмо, на этот раз — академик Вавилов. Если радий взрывом рассеять по площади, то эта площадь будетбиологически вредной». Поэтому надо бы устроить хранилища радия, и не в одном месте. Чтоб не рассеяли.

При этом ещё в феврале 1940 года академик Капица рассказывал детям, что в земных условиях ядерная энергия не будет использована. А если будет — понадобятся, возможно, тонны урана. Причём на выделение нужных изотопов придётся потратить энергии больше, чем получим.

Но всё-таки цепная реакция урана смотрелась очень привлекательно — хотя участвовало в ней меньше процента от массы природного урана. Но нужный изотоп, уран-235, получали пока микрограммами — а нужны были килограммы.

Четвертое китайское господство (1407–1427)

История

Звук взрыва ядерной бомбы можно услышать на видео, снятом Gizmodo в Тихом океане

Разработка и первое испытание

Основные статьи: Манхэттенский проект, Тринити (испытание)

Манхэттенский проект начал своё осуществление 17 сентября 1943 года. К нему было привлечено множество выдающихся учёных-физиков, многие из которых являлись беженцами из Европы.

К лету американцам удалось построить 3 атомные бомбы, 2 из которых были сброшены на Хиросиму и Нагасаки, а третью испытали незадолго до этого.
Конструкция Хиросимовского «Малыша», урановой ядерной бомбы, была проста и надёжна (хотя и малоэффективна), и американские учёные не сомневались в её успехе. Плутониевый «Толстяк» же имел более сложную, но и более эффективную конструкцию, и нуждался в проверке. Так 16 июля 1945 года в Нью-Мексико было проведено первое в мире испытание атомной бомбы, получившее название Тринити (Троица).

Примечания[править]

Атомное оружие

АТОМНОЕ ОРУЖИЕ, устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА. Первое ядерное оружие было применено Соединенными Штатами против японских городов Хиросимы и Нагасаки в августе 1945 г. Эти атомные бомбы состояли из двух стабильных доктритических масс УРАНА и ПЛУТОНИЯ, которые при сильном сталкивании вызвали превышение КРИТИЧЕСКОЙ МАССЫ, тем самым провоцируя бесконтрольную ЦЕПНУЮ РЕАКЦИЮ деления атомных ядер. При таких взрывах высвобождается огромное количество энергии и губительной радиации: взрывная мощность может равняться мощности 200 000 тонн тринитротолуола. Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно — в детеррите лития. Взрывная мощность может равняться мощности нескольких миллионов тонн (мегатонн) тринитротолуола. Площадь поражения, вызванного такими бомбами, достигает больших размеров: 15 мегатонная бомба взорвет все горящие вещества в пределах 20 км. Третий тип ядерного оружия, нейтронная бомба, является небольшой водородной бомбой, называемой также оружием повышенной радиации. Она вызывает слабый взрыв, который, однако, сопровождается интенсивным выбросом высокоскоростных НЕЙТРОНОВ. Слабость взрыв означает то, что здания повреждаются не сильно. Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели.

Вначале взрыв атомной бомбы (А) образует огненный шар (1) с температурой и миллионы градусов по Цельсию и испускает радиационное излучение (?) Через несколько минут (В) шар увеличивается в обьеме и создав!ударную волну с высоким давлением (3). Огненный шар поднимается (С), всасывая пыль и обломки, и образует грибовидное облако (D), По мере увеличения в обьеме огненный шар создает мощное конвекционное течение (4), выделяя горячее излучение (5) и образуя облако (6), При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным (7) в радиусе 8 км, серьезными (8) в радиусе 15км и заметными (Я) в радиусе 30 км Даже на расстоянии 20 км (10) взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров. Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию.

Смотрите ещё

Автономная эпоха при семье Кхук (905 — 938) и династии Нго (938 — 967)

Предыстория создания советской ядерной бомбы

Мы с вами уже знаем, кто изобрел атомную бомбу, как она работает и какие к каким последствия может привести. Теперь узнаем, как с ядерным оружием обстояли дела в СССР.

После бомбардировки японских городов, И. В. Сталин понял, что создание советской атомной бомбы является вопросом национальной безопасности. 20 августа 1945 года, в СССР был создан комитет по ядерной энергетике, главой которого назначили Л. Берию.

Стоит отметить, что работы в данном направлении велись в Советском Союзе еще с 1918 года, а в 1938 году, была создана специальная комиссия по атомному ядру при Академии наук. С началом Второй мировой войны, все работы в этом направлении были заморожены.

В 1943 году, разведчики СССР передали из Англии материалы закрытых научных трудов в области атомной энергетики. Эти материалы проиллюстрировали, что работа заграничных ученых над созданием атомной бомбы серьезно продвинулась вперед. В то же время американские резиденты поспособствовали внедрению надежных советских агентов в основные центры ядерных исследований США. Агенты передавали информацию о новых разработках советским ученым и инженерам.

Термоядерное оружие

Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника
важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.

Атомная бомба

В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях,
протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород – дейтерий, ядра которого имеют необычную структуру – один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии.

Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой,
которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии (для поддержания из жидкостного агрегатного состояния). Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес (более 60 т.), из-за чего нельзя было и думать об использовании таких зарядов на стратегических бомбардировщиках, а уж тем более в баллистических ракетах любой дальности. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение.

В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с
литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.

Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно-
урановая бомба, а также некоторые ее разновидности – сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы.

Как будили президента Картера

Джимми Картер. Фото: Reuters

Есть два типа ошибок, которые ведут к ложной тревоге: техническая и человеческая (или, если нам особенно не повезет, — обе сразу).

Классический пример первой — то, что случилось в 1980-м, когда Перри работал в администрации президента Джимми Картера.

«Это было настоящим потрясением», — вспоминает Перри. Началось все с телефонного звонка в 3 утра. Дежурный штаба ПВО США сообщил ему, что компьютеры системы наблюдения обнаружили 200 ракет, летящих прямо из Советского Союза в направлении Соединенных Штатов.

К тому времени уже было ясно, что это ненастоящее нападение — каким-то образом компьютеры ошиблись.

«Выяснилось, что перед тем, как позвонить мне, они уже связались с Белым домом. Они позвонили президенту. На звонок ответил его советник по вопросам национальной безопасности», — рассказывает Перри.

К счастью, он не стал сразу будить президента, помедлив несколько минут. За эти минуты успела прийти информация, что тревога — ложная.

Однако если бы такой паузы не было сделано, если бы президента Картера немедленно разбудили, сегодня мир мог бы быть совсем другим.

«Если бы президент сам поднял трубку, то у него было бы всего пять минут на то, чтобы решить — наносить ответный удар или нет. И это посреди ночи, когда не с кем даже проконсультироваться», — описывает ситуацию Перри.

После того случая он уже никогда не воспринимал ядерный удар по ошибке как теоретическую проблему — это было настоящей и угрожающе реальной возможностью. «Я бы сказал, это чуть не случилось», — подчеркивает он.

В том случае источником проблемы стал неисправный чип в компьютере национальной системы раннего оповещения. Его замена стоила менее доллара.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector