Гравитация

Содержание

Содержание

Марсианские пыльные бури

Последовательность развития пылевой бури на Марсе. Credit: MARCI.

Локальные пыльные вихри образуются на Марсе постоянно.

Их появлению способствуют наличие мелкодисперсной пыли и разреженность атмосферы, которая позволяет мелким частицам грунта подниматься на большую высоту.

Эти процессы активизируются, когда планета находится ближе к Солнцу.

Ежегодно на Марсе бушуют пыльные бури. Чаще они покрывают площадь размером с земной континент, но иногда принимают глобальный характер и охватывают всю поверхность планеты. Такие катаклизмы происходят каждые 6-8 лет.

Бури на Марсе отслеживаются учеными уже более ста лет. В наше время для этого используют марсианские и космические станции. Это позволяет зафиксировать важные параметры и сделать четкие фотоснимки. Последняя глобальная буря наблюдалась в 2018 г. Она началась в июне и длилась до середины сентября. В этом случае интервал между глобальными ураганами составил 11 лет.

В результате погодного катаклизма была прервана связь с марсоходом NASA Opportunity, который из-за пыли, покрывшей солнечные батареи, впал в спящий режим и с тех пор не выходил на связь. О завершении его миссии было официально объявлено в феврале 2019 г.

Методы измерения силы тяжести

Силу тяжести измеряют динамическими и статическими методами. Динамические методы используют наблюдение за движением тела под действием силы тяжести и измеряют время перехода тела из одного заранее определённого положения в другое. Они используют: колебания маятника, свободное падение тела, колебания струны с грузом. Статические методы используют наблюдение за изменением положения равновесия тела под действием силы тяжести и некоторой уравновешивающей её силы и измеряют линейное или угловое смещение тела.

Измерения силы тяжести бывают абсолютными и относительными. Абсолютные измерения определяют полное значение силы тяжести в заданной точке. Относительные измерения определяют разность силы тяжести в заданной точке и некоторого другого, заранее известного значения. Приборы, предназначенные для относительных измерений силы тяжести, называются гравиметрами.

Динамические методы определения силы тяжести могут быть как относительными, так и абсолютными, статические — только относительными.

История

Аристотель объяснял силу тяжести движением тяжёлых физических стихий (земля, вода) к своему естественному месту (центру Вселенной внутри Земли), причём скорость тем больше, чем ближе тяжёлое тело к нему.

Архимед рассмотрел вопрос о центре тяжести параллелограмма, треугольника, трапеции и параболического сегмента. В сочинении «О плавающих телах» Архимед доказал закон гидростатики, носящий его имя.

Иордан Неморарий в сочинении «О тяжестях» при рассмотрении грузов на наклонной плоскости разлагал их силы тяжести на нормальную и параллельную наклонной плоскости составляющие, был близок к определению статического момента.

Стевин экспериментально определил, что тела разных масс падают с одинаковым ускорением, установил теоремы о давлении жидкости в сосудах (давление зависит только от глубины и не зависит от величины, формы и объёма сосуда) и о равновесии грузов на наклонной плоскости (на наклонных плоскостях равной высоты силы, действующие со стороны уравновешивающихся грузов вдоль наклонных плоскостей, обратно пропорциональны длинам этих плоскостей). Доказал теорему, согласно которой в случае равновесия центр тяжести однородного плавающего тела должен находиться выше центра тяжести вытесненной жидкости.

Галилей экспериментально исследовал законы падения тел (ускорение не зависит от веса тела), колебаний маятников (период колебаний на зависит от веса маятника) и движения по наклонной плоскости.

Гюйгенс создал классическую теорию движения маятника, оказавшую значительное влияние на теорию тяготения.

Декарт разработал кинетическую теорию тяготения, объяснявшую силу тяжести взаимодействием тел с небесным флюидом, выдвинул гипотезу о зависимости силы тяжести от расстояния между тяжёлым телом и центром Земли.

Ньютон из равенства ускорений падающих тел и второго закона Ньютона сделал вывод о пропорциональности силы тяжести массам тел и установил, что сила тяжести является одним из проявлений силы всемирного тяготения.

Эйнштейн объяснил факт равенства ускорений падающих тел независимо от их массы (эквивалентность инертной и тяжёлой массы) как следствие принципа эквивалентности равномерно ускоренной системы отсчёта и системы отсчёта, находящейся в гравитационном поле.

Спутники Марса

Планета имеет 2 естественные луны. Фобос и Деймос были открыты в 1877 г. американским астрономом А. Холлом. Он дал спутникам имена в честь героев древнегреческой мифологии — божеств страха и ужаса.

Краткое описание марсианских сателлитов:

  • Фобос — диаметр 22 км, удаленность от планеты 9,2-9,5 тыс. км, скорость вращения его вокруг Марса — 7 часов, и этот период постепенно уменьшается, как и радиус его орбиты, становящийся с каждым тысячелетием на несколько метров меньше;
  • Деймос — размер в поперечнике 12 км, расстояние от Марса — 23,45-23,47 тыс. км, один орбитальный виток длится 1,26 земных дня.

Вторая версия объясняет рождение Деймоса и Фобоса ударом какого-то объекта о Марс, в результате чего из его тверди было вырвано некоторое количество планетарного материала. Противники этой гипотезы возражают, что состав планеты и ее спутников различается.

Спутники Марса — Фобос и Деймос. Credit: Engadget RSS Feed.

Притяжение и теория относительности

Отказ Ньютона обсуждать природу гравитации («Я гипотез не измышляю») был очевидной слабостью его концепции. Неудивительно, что в последующие годы появилось множество теорий гравитации.

Большинство из них относились к так называемым гидродинамическим моделям, которые пытались обосновать возникновение тяготения механическим взаимодействием материальных объектов с некой промежуточной субстанцией, имеющей те или иные свойства. Исследователи называли ее по-разному: «вакуум», «эфир», «поток гравитонов» и т. д. В этом случае сила притяжения между телами возникала в результате изменения этой субстанции, при ее поглощении объектами или экранировании потоков. В реальности все подобные теории имели один серьезный недостаток: довольно точно предсказывая зависимость гравитационной силы от расстояния, они должны были приводить к торможению тел, которые двигались относительно «эфира» или «потока гравитонов».

Проще говоря, пространственно-временной континуум воздействует на материю, обуславливая ее движение. А та, в свою очередь, влияет на пространство, «указывая» ему, как искривляться.

Действие гравитации с точки зрения Эйнштейна

Силы притяжения действуют и в микромире, но на уровне элементарных частиц их влияние, по сравнению с электростатическим взаимодействием, ничтожно. Физики считают, что гравитационное взаимодействие не уступало остальным в первые мгновенья (10 -43 сек.) после Большого взрыва.

Эйнштейн в своей работе предвидел удивительные эффекты гравитационных сил, большая часть из которых уже нашла подтверждение. Например, возможность массивных тел искривлять световые лучи и даже замедлять течение времени. Последний феномен обязательно учитывается при работе глобальных спутниковых систем навигации, таких как ГЛОНАСС и GPS, в противном случае через несколько суток их погрешность составляла бы десятки километров.

Кроме того, следствием теории Эйнштейна являются так называемые тонкие эффекты гравитации, такие как гравимагнитное поле и увлечение инерциальных систем отсчёта (он же эффект Лензе-Тирринга). Эти проявления силы тяготения настолько слабы, что долгое время их не могли обнаружить. Только в 2005 году благодаря уникальной миссии НАСА Gravity Probe B был подтверждён эффект Лензе-Тирринга.

«Одинокий орёл»: достоинства и недостатки

Роль инженерных войск в мирное время

Колония на крупнейшем спутнике Сатурна

Титан — единственное космическое тело в пределах Солнечной системы, на котором, как и на Земле, есть жидкость на поверхности, состоящая, правда, не из воды, а из метана и этана. Титан содержит массу полезных ископаемых, аналогичных нефти и природному газу. Их можно использовать для получения энергии, что заменит иссякаемые земные источники. Атмосфере Титана не хватает кислорода, но его можно добывать из водяного льда, который находится под поверхностью спутника. А от холодных температур спасет скафандр.

Гравитация на Титане очень слабая, но некоторые ученые рассматривают это как плюс. Люди смогут летать над поверхностью спутника с прикрученными крыльями, а при их поломке плавно приземляться, ведь их не будет тянуть к земле. Такой вид перемещения может стать полезным в практике и в то же время веселым развлечением.

Титан на фоне Сатурна

(Фото: NASA)

Главный недостаток Титана — он находится слишком далеко от Земли. С современными технологиями лететь до него придется около семи лет, что может оказаться не просто долго, но и опасно для здоровья астронавтов. К тому же человечество пока не обладает технологиями, способными оснастить такой долгий полет. Колонизация Титана может начаться после освоения более близких к Земле космических тел и создания более мощных космических кораблей.

Жизнь на облаке Венеры

Венера кажется еще одной пригодной для жизни планетой. Но перед заселением она нуждается в терраформировании: без изменения климата переехать на Венеру невозможно, так как на ней слишком жарко, сильные ветры, и высокий уровень радиации и давления. Ученые нашли еще один возможный способ колонизации планеты: они предлагают заселить ее атмосферу и устроить воздушный город в облаках. Главное условие — не приземляться на поверхность.

«Атмосфера Венеры похожа на земную, и на высоте 50 км от планеты жить будет достаточно комфортно», — говорит Джеффри Лэндис, ученый из NASA и писатель-фантаст, одним из первых предложивший эту идею.

Поскольку сила гравитации на Венере почти такая же, как на Земле, корабли смогут удержаться в воздухе. А защитить дома от серной кислоты поможет тефлоновая эмаль.

Воздушный дом в облаках Венеры

(Фото: medium.com)

Однако идея ученых сталкивается с несколькими проблемами. В такие дома будет сложно доставлять продовольствие и сырье, необходимые для выживания. Как вариант, астронавты могут отправлять на поверхность роботов и управлять ими с корабля. Венера по строению похожа на Землю, и на ней есть все необходимые для жизни элементы, включая воду. А роботы с дистанционным управлением могли бы как раз заниматься их добычей. И все же говорить о реализации такой идеи пока рано: ученым необходимо досконально изучить планету и отправить туда еще не одну космическую миссию.

Футурология

На Венере нашли признаки жизни. Она обитаема?

Преимущества

Гипотетический терраформированный Марс

По словам ученых, Марс существует на внешней границе обитаемой зоны , области Солнечной системы, где жидкая вода на поверхности может поддерживаться, если концентрированные парниковые газы могут повысить атмосферное давление. Отсутствие как магнитного поля, так и геологической активности на Марсе может быть результатом его относительно небольшого размера, который позволил внутреннему пространству остыть быстрее, чем Земля, хотя детали такого процесса все еще недостаточно изучены.

Есть веские признаки того, что на ранней стадии развития Марса когда-то была атмосфера такой же толщины, как у Земли, и что его давление поддерживало обилие жидкой воды на поверхности . Хотя вода, кажется, когда-то присутствовала на поверхности Марса, в настоящее время грунтовый лед существует от средних широт до полюсов. Почва и атмосфера Марса содержат много основных элементов решающее значение для жизни, в том числе серы, азота, водорода, кислорода, фосфора и углерода.

Любое изменение климата, вызванное в ближайшем будущем, скорее всего, будет вызвано потеплением парниковых газов, вызванным увеличением содержания углекислого газа в атмосфере ( CO 2 ) и, как следствие, увеличение содержания водяного пара в атмосфере. Эти два газа — единственные вероятные источники парникового эффекта, которые доступны в больших количествах в окружающей среде Марса. Большое количество водяного льда существует под поверхностью Марса, а также на поверхности у полюсов, где он смешан с сухим льдом , замороженным CO. 2 . Значительное количество воды находится на южном полюсе Марса, которая, если бы она растаяла, соответствовала бы океану глубиной 5–11 метров в масштабе всей планеты. Замороженный диоксид углерода ( CO 2 ) на полюсах сублимируется в атмосферу во время марсианского лета, и остаются небольшие количества воды, которые сносятся с полюсов быстрыми ветрами со скоростью, приближающейся к 400 км / ч (250 миль в час). Это сезонное явление переносит в атмосферу большое количество пыли и водяного льда , образуя ледяные облака, похожие на Землю .

Большая часть кислорода в марсианской атмосфере присутствует в виде углекислого газа ( CO 2 ), основной атмосферной составляющей. Молекулярный кислород (O 2 ) существует только в следовых количествах. Большое количество кислорода также содержится в оксидах металлов на поверхности Марса и в почве в виде пернитратов . Анализ образцов почвы, взятых спускаемым аппаратом Phoenix, показал присутствие перхлората , который использовался для выделения кислорода в химических генераторах кислорода . Электролиз можно было бы использовать для разделения воды на Марсе на кислород и водород, если бы было достаточно жидкой воды и электричества. Однако, если его выбросить в атмосферу, он улетит в космос.

Движение тел под действием силы тяжести

В том случае, когда модуль перемещения тела много меньше расстояния до центра Земли, то можно считать силу тяжести постоянной, а движение тела равноускоренным. Если начальная скорость тела отлична от нуля и её вектор направлен не по вертикали, то под действием силы тяжести тело движется по параболической траектории.

При бросании тела с некоторой высоты параллельно поверхности Земли дальность полёта увеличивается с ростом начальной скорости. При больших значениях начальной скорости для вычисления траектории тела необходимо учитывать шарообразную форму Земли и изменение направления силы тяжести в разных точках траектории.

При некотором значении скорости, называемом первой космической скоростью, тело, брошенное по касательной к поверхности Земли, под действием силы тяжести при отсутствии сопротивления со стороны атмосферы может двигаться вокруг Земли по окружности, не падая на Землю. При скорости, превышающую вторую космическую скорость, тело уходит от поверхности Земли в бесконечность по гиперболической траектории. При скоростях, промежуточных между первой и второй космическими, тело движется вокруг Земли по эллиптической траектории.

Сферически симметричное тело

В соответствии с законом всемирного тяготения, сила гравитационного притяжения, действующая на материальную точку массой m {\displaystyle m} на поверхности сферически симметричного астрономического тела, имеющего массу M {\displaystyle M} , определяется соотношением:

F = G ⋅ M ⋅ m R 2 , {\displaystyle F=G\cdot {M\cdot m \over R^{2}},}

где G {\displaystyle G} — гравитационная постоянная, равная 6,67384(80)·10−113·−2·−1, а R {\displaystyle R} — радиус тела. Данное соотношение справедливо в предположении, что распределение массы по объёму тела сферически симметрично. В этом случае сила гравитационного притяжения направлена к центру тела.

Модуль центробежной силы инерции Q {\displaystyle Q} , действующей на материальную частицу, выражается формулой:

Q = m a ω 2 , {\displaystyle Q=ma\omega ^{2},}

где a {\displaystyle a} — расстояние между частицей и осью вращения рассматриваемого астрономического тела, а ω {\displaystyle \omega } — угловая скорость его вращения. Центробежная сила инерции перпендикулярна оси вращения и направлена в сторону от неё.

Поправки, вносимые общей теорией относительности в закон всемирного тяготения Ньютона, в условиях Земли и других планет крайне малы (модуль гравитационного потенциала на поверхности Земли, равный половине квадрата второй космической скорости v I I {\displaystyle v_{II}} , крайне мал по сравнению с квадратом скорости света c {\displaystyle c} : v I I 2 2 c 2 ∼ 10 − 10 {\displaystyle {\frac {v_{II}^{2}}{2c^{2}}}\sim 10^{-10}} ).

Какого числа отмечают День инженерных войск

Дата празднования установлена в современной России в 1996 году. Указом президента День инженерных войск отмечают ежегодно 21 января. Выбран день неслучайно: более 300 лет назад, в далеком 1701 году, великий реформатор Петр I подписал указ об основании Школы пушкарского приказа в Москве.

Необходимость создания собственного российского учебного заведения, где бы готовили специалистов инженерных войск, назревала давно. Сам Петр I был вынужден неоднократно обращаться к зарубежным специалистам при решении вопросов о строительстве фортификационных сооружений или обеспечении войск инженерными приспособлениями.

Основанием собственного учебного заведения Петр I намеревался решить проблему и во многом преуспел. Всего через год в рядах армии было создано первое минерное подразделение, а через 10 лет учебное заведение разрослось настолько, что объединило Московскую и Санкт-Петербургскую высшие школы и стало кузницей высшего офицерского состава инженерных войск.

Картина Поля Делароша «Петр Великий» &nbsp/&nbsp

Возможные решения проблемы радиации Марса

Колонистам в любом случае придется столкнуться с проблемой марсианской радиации

Поэтому важно придумать защитные средства. В НАСА отправили сеть спутников к Солнцу, чтобы получить максимальное количество информации о его функционировании и радиационных дозах

Некоторые предлагают создавать колонии под землей, так как марсианская почва выступает наилучшим щитом и поможет справиться с температурными колебаниями. Или же использовать надувные модули с керамическим покрытием на основе марсианской почвы.

Марсианская база глазами художника

Некоммерческий проект MarsOne предлагает отдельно создать специальный бункер. Тогда приборы смогли бы фиксировать вспышки, и все колонисты прятались в убежище. Наиболее радикальное решение – влияние на ядро, чтобы заставить его создавать магнитное поле. То есть, придется его раскрутить.

Самое удивительное, что это можно сделать. Есть вариант со взрывом череды термоядерных боеголовок возле ядра. Или же можно провести электрический разряд сквозь планету, вызвав сопротивления.

В 2008 году японские ученые отметили снижение интенсивности магнитного поля на 10% за последние 150 лет. Они предложили создать сверхпроводящие кольца вокруг планеты, которые компенсируют потери в будущем.

В 2007 году ученые создали наиболее подходящую модель марсианского ядра. Они заметили, что при температуре в 1227°C внутреннее станет жидким, а внешнее – частично твердым. Это значит, что у Марса ранее был энергетический источник, с которым что-то случилось. Но все работы с ядром пока существуют лишь в теории. Так что Красная планета по-прежнему остается опасной.

Центральная часть Колумбийских холмов, захваченные камерой ровера Spirit

Но ученые не сдаются и предлагают новые идеи. Так что однажды Марс все-таки покорится настырным землянам.

  • Интересные факты о Марсе;
  • Колонизация Марса;
  • Марс и Земля;
  • Есть ли жизнь на Марсе;
  • Терраформирование Марса
  • Когда мы отправим людей на Марс?
  • Сравнение Марса и Земли
  • Как Земля выглядит с Марса?
  • Что такое марсианское проклятие?
  • Когда открыли Марс?

Положение и движение Марса

  • Орбита Марса;
  • Сезоны на Марсе
  • Как далеко Марс от Солнца?
  • Сближение Марса
  • Как далеко находится Марс?
  • Сколько лететь до Марса;
  • День на Марсе;
  • Год на Марсе;

Строение Марса

  • Размеры Марса;
  • Кольца Марса;
  • Состав Марса;
  • Атмосфера Марса;
  • Воздух на Марсе;
  • Масса Марса;

Поверхность Марса

  • Поверхность Марса;
  • Лед на Марсе
  • Радиация на Марсе
  • Вода на Марсе;
  • Температура на Марсе;
  • Гравитация на Марсе;
  • Цвет Марса;
  • Почему Марс красный;
  • Насколько холодный Марс;
  • Вулканы на Марсе;
  • Вулкан Олимп;
  • Долина Маринер;
  • Лицо на Марсе;
  • Пирамида на Марсе;

Почему на Марсе по-другому

Сила тяжести Марса относительно Земли зависит от размера планет, массы и расстояния между их центрами. Планета с большей массой оказывает наибольшую степень гравитационного притяжения. Таким образом, Земля, имея наибольшую массу, оказывает наибольшую силу притяжения относительно Марса. По мере увеличения расстояния между планетами, сила гравитации между ними уменьшается.

Гравитация Земли, имея высокие показатели, способна с большей силой, нежели на Марсе притягивать объекты. Таким образом, земная гравитация, по сравнению с марсианской, позволяет сохранять жизнедеятельность и жизнеспособность на Земле. В то время как на Марсе низкая сила тяготения не удерживает на поверхности планеты даже воду.

Сравнительный анализ характера силы притяжения на Марсе относительно силы тяготения Земли, позволяет ответить на вопрос, почему на Марсе нет такого магнитного поля, как на Земле.

Несмотря на схожесть двух планет: площади, наличие полярных шапок, схожего наклона оси вращения и климатических изменений, Марс и Земля имеют весомые различия. Показатель давления на Марсе на 99 992.5 миллибар ниже давления на Земле. Сезонная температура Марса во много раз ниже, чем на Земле. Так, зимой был зарегистрирован минимальный показатель -143 градуса, летом поверхность разогревается до 35 градусов тепла.

https://youtube.com/watch?v=rzPyEYqqLLc%3F

Ученые заняты рассмотрением условий, при которых жизнь на четвертой от Солнца будет возможна. На данный момент исследований Красной планеты недостаточно, чтобы собрать данные жизни на Марсе, так как низкое магнитное поле и сила гравитации усложняют пребывание человека на планете, точнее подвергают его организм нежелательным изменениям, что вряд ли совместимо с жизнью.

Пригодилась информация? Плюсани в социалки!

  • 30 Новейших, известных и спорных фактов о планете Марс
  • Атмосфера Марса — химический состав, погодные условия и климат в прошлом
  • Марс в разрезе: внутреннее строение, геологическая эволюция и состав

Сила тяжести

Почему на Марсе по другому

Тяготение Марса относительно Земли выражается в пропорциональной зависимости следующих характеристик:

  • массы;
  • расстояния до центра планеты;
  • размера;
  • плотности.

Земля, имеющая превосходство по всем показателям, оказывает большую силу притяжения, которая ослабляется лишь по мере удаления планет друг от друга. Эти же параметры определяют и воздействие на предметы, находящиеся на поверхности каждой из них.

Несмотря на отдельные совпадения и частичное сходство, проявляющиеся в наличии полярных шапок, примерно одинаковом наклоне оси вращения, климатических изменениях, различия между планетами гораздо существенней.

Сила тяжести Марса относительно Земли. Credit: Theguestion

Литература

Структура и состав Земли и Марса

Земля и Марс — представители планет земной группы, а значит обладают схожей структурой. Это металлическое ядро с мантией и корой. Но земная плотность (5.514 г/см3) выше марсианской (3.93 г/см3), то есть, Марс вмещает более легкие элементы. На нижнем рисунке сравнивается строение Марса и планеты Земля.

Сравнение состава Земли и Марса

Марсианское ядро простирается на 1795 +/-65 км и представлено железом и никелем, а также 16-17% серы. Обе планеты владеют силикатной мантией вокруг ядра и твердой поверхностной корой. Земная мантия простирается на 2890 км и состоит из силикатных пород с железом и магнием, а кора охватывает 40 км, где помимо железа и магния есть гранит.

Марсианская мантия составляет всего 1300-1800 км и также представлена силикатной породой. Но она частично вязкая. Кора – 50-125 км. Получается, что при практически одинаковой структуре, они отличаются по толщине слоев.

База на спутнике Юпитера

Каллисто, естественный спутник Юпитера, может стать еще одним претендентом на колонизацию. О перспективах его заселения говорят в «Роскосмосе» и . Считается, что на нем содержится большое количество подземной воды: по предварительным подсчетам, ее может быть в два раза больше, чем во всех океанах Земли. Помимо практической пользы, вода может стать предметом для исследования: не исключается, что в ней можно найти признаки жизни. Также со спутника было бы удобно совершать миссии на Юпитер, где добывать водород и гелий-3, необходимый для ядерного топлива. База на Каллисто откроет доступ и к полезным ископаемым соседнего естественного спутника — Европы или Юпитера II.

Колонизация Каллисто даст человечеству массу возможностей для добычи ресурсов и проведения исследований, необходимых для понимания устройства Вселенной. Но на пути к этому стоят ряд пока не решенных задач. Так, на спутнике высок уровень радиации и низкая гравитация. Исключение этих проблем упирается в колоссальный бюджет, и будущее миссии зависит от того, сколько на нее готовы потратить. Кроме того, колонизировать Каллисто вероятно начнут не раньше, чем Луну и Марс. Освоение этих космических объектов займет меньше времени и денег. А Каллисто сможет стать логичным следующим шагом.

Спутники Юпитера

(Фото: NASA)

Клаустрофобия

Как известно, человек – существо социальное. Ему сложно находиться в замкнутом пространстве без всякого общения, как и пребывать долгое время в составе одной команды. Космонавты «Аполлона» могли быть в полете около восьми месяцев. Данная перспектива соблазнительна не для всех.

Очень важно не дать космонавту в период космического путешествия почувствовать себя одиноким. Самый длинный полет осуществил Валерий Поляков, который находился в космосе 438 суток, из которых более половины он прибывал там практически в полном одиночестве

Единственным его собеседником был Центр управления космическими полетами. За весь период Поляков осуществил 25 научных опытов.

Столь длительный период полета космонавта был связан с тем, что он хотел доказать, что можно осуществлять долгие полеты и сохранять при этом нормальную психику. Правда, после высадки Полякова на Землю специалисты отметили изменения в его поведении: космонавт стал более замкнутым и раздражительным.

Думаю, теперь понятно, почему роль психологов столь важна при отправке космонавтов. Специалисты отбирают людей, способных находиться в одной группе долгий период времени. В космос попадают те, кто легко находит общий язык.

Боевые корабли основных классов

Сферически симметричное тело

В соответствии с законом всемирного тяготения, сила гравитационного притяжения, действующая на материальную точку массой m {\displaystyle m} на поверхности сферически симметричного астрономического тела, имеющего массу M {\displaystyle M} , определяется соотношением:

F = G ⋅ M ⋅ m R 2 , {\displaystyle F=G\cdot {M\cdot m \over R^{2}},}

где G {\displaystyle G} — гравитационная постоянная, равная 6,67384(80)·10−113·−2·−1, а R {\displaystyle R} — радиус тела. Данное соотношение справедливо в предположении, что распределение массы по объёму тела сферически симметрично. В этом случае сила гравитационного притяжения направлена к центру тела.

Модуль центробежной силы инерции Q {\displaystyle Q} , действующей на материальную частицу, выражается формулой:

Q = m a ω 2 , {\displaystyle Q=ma\omega ^{2},}

где a {\displaystyle a} — расстояние между частицей и осью вращения рассматриваемого астрономического тела, а ω {\displaystyle \omega } — угловая скорость его вращения. Центробежная сила инерции перпендикулярна оси вращения и направлена в сторону от неё.

Поправки, вносимые общей теорией относительности в закон всемирного тяготения Ньютона, в условиях Земли и других планет крайне малы (модуль гравитационного потенциала на поверхности Земли, равный половине квадрата второй космической скорости v I I {\displaystyle v_{II}} , крайне мал по сравнению с квадратом скорости света c {\displaystyle c} : v I I 2 2 c 2 ∼ 10 − 10 {\displaystyle {\frac {v_{II}^{2}}{2c^{2}}}\sim 10^{-10}} ).

Федеральный период

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector