Суперэвм

Содержание

Содержание

Гладкоствольный карабин с болтовым затвором МЦ 20-01, так называемая Фроловка

Представление

Заявленная начальная производительность Fugaku составила Rmax 416 петафлопс в тесте высокой производительности LINPACK FP64, используемом TOP500 . После обновления числа процессоров в ноябре 2020 года производительность Fugaku увеличилась до Rmax, равного 442 петафлопс.

Fugaku также занял первые места в других рейтингах, тестирующих компьютеры на различных рабочих нагрузках, включая Graph 500 , HPL-AI и HPCG . Ни один из предыдущих суперкомпьютеров никогда не возглавлял сразу все четыре рейтинга.

После обновления оборудования в ноябре 2020 года «Fugaku увеличила свою производительность в новом эталонном тесте HPC-AI со смешанной точностью до 2,0 экзафлопс, превзойдя отметку 1,4 экзафлопса, зафиксированную шесть месяцев назад. Это первые эталонные измерения выше одного экзафлопса для любой точности. на любом типе оборудования «. (рост на 42%). Интересно, что количество ядер Arm A64FX было увеличено только на 4,5%, до 7630848, но измеренная производительность выросла намного больше в этом тесте (и система не использует другие вычислительные возможности, такие как графические процессоры ), и немного больше в TOP500 , или на 6,4%, до 442 петафлопс, что является новым мировым рекордом и настолько сильно увеличивает разрыв до следующего компьютера. Для теста High-Performance Conjugate Gradient (HPCG) он более чем в 5,4 раза быстрее, с 16,0 HPCG-петафлопс, чем система номер два, Summit , которая также занимает второе место в TOP500.

Производительность Fugaku превосходит совокупную производительность следующих 4 суперкомпьютеров в списке топ-500 (почти следующие 5) и на 45% превосходит все остальные компьютеры из топ-10 в тесте HPCG .

Архитектура современных Супер-ЭВМ

Архитектура ЭВМ охватывает значительный круг проблем, связанных с созданием комплекса аппаратных и программных средств и учитывающих большое количество определяющих факторов. Среди этих факторов основными являются: стоимость, сфера применения, функциональные возможности, удобство в эксплуатации, а одним из основных компонентов архитектуры считаются аппаратные средства.Архитектура ЭВМ включает в себя как структуру, отражающую состав ПК, так и программно – математическое обеспечение. Структура ЭВМ — совокупность элементов и связей между ними. Основным принципом построения всех современных ЭВМ является программное управление.

Все компьютеры делятся на четыре класса в зависимости от числа потоков команд и данных.

Второй класс характеризуется наличием одиночного потока команд, но множественного nomoka данных (SIMD). К этому архитектурному классу принадлежат однопроцессорные векторные или, точнее говоря, векторно-конвейерные суперкомпьютеры, например, Cray-1 . В этом случае мы имеем дело с одним потоком (векторных) команд, а потоков данных — много: каждый элемент вектора входит в отдельный поток данных. К этому же классу вычислительных систем относятся матричные процессоры, например, знаменитый в свое время ILLIAC-IV. Они также имеют векторные команды и реализуют векторную обработку, но не посредством конвейеров, как в векторных суперкомпьютерах, а с помощью матриц процессоров.

К третьему классу — MIMD — относятся системы, имеющие множественный поток команд и множественный поток данных. К нему принадлежат не только многопроцессорные векторные суперЭВМ, но и вообще все многопроцессорные компьютеры. Подавляющее большинство современных суперЭВМ имеют архитектуру MIMD.

Четвертый класс в систематике Флинна, MISD, не представляет практического интереса,по крайней мере для анализируемых нами компьютеров. В последнее время в литературе часто используется также термин SPMD (одна программа — множественные данные). Он относится не к архитектуре компьютеров, а к модели распараллеливания программ и не является расширением систематики Флинна. SPMD обычно относится к MPP (т.е. MIMD) — системам и означает, что несколько копий одной программы.

Дробаш с 8-ю стволами – сумасшествие американских оружейников или реально эффективное оружие

Характеристики Christofari

Christofari создан специалистами Сбербанка и Sbercloud в партнерстве с американской компанией Nvidia на базе высокопроизводительных узлов Nvidia DGX-2. Заявленная производительность суперкомпьютера в проведенных тестах Linpack достигла 6,7 петафлопс.

Как пандемия изменила подходы к организации рабочего пространства
Интеграция

В Nvidia DGX-2 называют «самым большим в мире GPU». Устройство, представленное в 2018 г., оснащается двумя процессорами Intel Xeon Platinum и способно работать с 16 видеоускорителями Tesla V100 с 32 ГБ памяти HBM2. Общую пропускную способность в 14,4 ТБ/сек обеспечивают технологии межчиповых соединений NVSwitch и NVLink2.

Производительность одного узла DGX-2 может достигать 2 петафлопс, а ее стоимость на момент анонса составляла $399 тыс.

Развитие суперкомпьютеров в 1980-х гг.

В 1985 г. компания Cray Research представила четырехъядерный компьютер Cray-2. Он стал первым вычислительным устройством, производительность которого превысила один миллиард FLOPS.

В 1983 г. Даниэль Хиллис, аспирант Массачусетского технологического института, придумал, как можно повысить производительность многопроцессорных систем, относящихся к 4 поколению ЭВМ. И в том же году он стал соучредителем компании Thinking Machines Corporation. В 1985 г. данная компания разработала свой первый компьютер CM-1. Он использовал 65 536 недорогих однобитовых процессоров, которые были сгруппированы по 16 шт. на одном чипе. Производительность компьютера CM-1 в некоторых операциях достигала нескольких миллиардов FLOPS и была сопоставима с самым быстрым на тот момент суперкомпьютером Cray.

Stampede – PowerEdge C8220

  • Местоположение: США
  • Производительность: 5,16 петафлопс
  • Теоретический максимум производительности: 8,52 петафлопс
  • Мощность: 4,5 МВт

Находящийся в Техасе Stampede является единственным в первой десятке Top-500 кластером, который был разработан американской компанией Dell. Суперкомпьютер состоит из 160 стоек.

Этот суперкомпьютер является мощнейшим в мире среди тех, которые применяются исключительно в исследовательских целях. Доступ к мощностям Stampede открыт научным группам. Используется кластер в самом широком спектре научных областей – от точнейшей томографии человеческого мозга и предсказания землетрясений до выявления паттернов в музыке и языковых конструкциях.

Vulcan – Blue Gene/Q

  • Местоположение: США
  • Производительность: 4,29 петафлопс
  • Теоретический максимум производительности: 5,03 петафлопс
  • Мощность: 1,9 МВт

«Вулкан» разработан американской компанией IBM, относится к семейству Blue Gene и находится в Ливерморской национальной лаборатории имени Э. Лоуренса. Принадлежащий Министерству энергетики США суперкомпьютер состоит из 24 стоек. Функционировать кластер начал в 2013 году.

В отличие уже упомянутого CS-Storm, сфера применения «Вулкана» хорошо известна – это различные научные исследования, в том числе в области энергетики, вроде моделирования природных явлений и анализа большого количества данных.

Различные научные группы и компании могут получить доступ к суперкомпьютеру по заявке, которую нужно отправить в Центр инноваций в области высокопроизводительных вычислений (HPC Innovation Centre), базирующийся в той же Ливерморской национальной лаборатории.

Конструкция боевой единицы

Немного истории

Мощные вычислительные устройства появились далеко не вчера. Еще во время Второй мировой войны британцам с помощью компьютера Colossus удалось взломать немецкие военные шифры. Его быстродействие составляло 25 тыс. символов в секунду – неслыханная скорость для своего времени.

В 1946 году в США появился электронный вычислитель ENIAC, использовавшийся для расчетов таблиц стрельбы. Аппарат содержал 17 тыс. ламп и весил более 27 тонн. Эта ЭВМ использовалась для моделирования термоядерных взрывов, решения аэродинамических задач, метеорологических прогнозов. Однако данные устройства еще не были полноценными ЭВМ.

Только к середине 60-х годов развитие электронной промышленности и информатики позволило создавать по-настоящему мощные компьютеры. Считается, что сам термин был придуман сотрудниками фирмы CDC Джорджем Мишелем и Сиднеем Фернбачем. Однако появлению мощных вычислительных машин мы обязаны американскому инженеру и изобретателю Сеймуру Крею. Первым суперкомпьютером считается Cray-1, появившийся в 1974 году. Он мог производить 180 млн операций в секунду. Современный персональный компьютер превосходит этот «суперкомпьютер» почти в 50 раз.

Буквально за десятилетия Китай стал одним из мировых лидеров в области создания мощных ЭВМ

Созданием мощных ЭВМ занимались и в СССР. Причем достижения советских инженеров зачастую превосходили успехи их заокеанских коллег. Нашими учеными было создано целое семейство мощнейших вычислительных машин «Эльбрус», которые по характеристикам превосходили западные аналоги.

В 1985 году компания Крея представила сразу два новых устройства: «Крей-2» и «Крей Y-MP» с быстродействием 1200 и 2670 млн вычислений в секунду соответственно. В 1988 году новая ЭВМ достигла мощности в 1 гигафлопс и стала стандартом своего времени, на который равнялись другие производители. В короткий период в разных странах мира появились десятки суперкомпьютеров.

Ранние суперкомпьютеры оснащались обычными скалярными процессорами со скоростью работы выше, чем у обычных ЭВМ. Позже их заменили векторные процессоры, а сегодня стандартом считаются кластерные системы, состоящие из тысяч дешевых процессоров и модулей памяти. Подобная схема отличается прекрасным сочетанием производительности и минимальной стоимости.

С 1993 года существует рейтинг суперкомпьютеров, составленный с помощью теста LINPACK. В него входит 500 самых быстрых и мощных ЭВМ мира. Список обновляется два раза в год.

Программное обеспечение суперкомпьютеров

Наиболее распространёнными программными средствами суперкомпьютеров, так же, как и параллельных или распределённых компьютерных систем, являются интерфейсы программирования приложений (API) на основе MPI и PVM, и решения на базе открытого программного обеспечения, наподобие Beowulf и openMosix, позволяющего создавать виртуальные суперкомпьютеры даже на базе обыкновенных рабочих станций и персональных компьютеров. Для быстрого подключения новых вычислительных узлов в состав узкоспециализированных кластеров применяются технологии наподобие ZeroConf. Примером может служить реализация рендеринга в программном обеспечении Shake, распространяемом компанией Apple. Для объединения ресурсов компьютеров, выполняющих программу Shake, достаточно разместить их в общем сегменте локальной вычислительной сети.

В настоящее время границы между суперкомпьютерным и общеупотребимым программным обеспечением сильно размыты и продолжают размываться ещё более вместе с проникновением технологий параллелизации и многоядерности в процессорные устройства персональных компьютеров и рабочих станций. Исключительно суперкомпьютерным программным обеспечением сегодня можно назвать лишь специализированные программные средства для управления и мониторинга конкретных типов компьютеров, а также уникальные программные среды, создаваемые в вычислительных центрах под «собственные», уникальные конфигурации суперкомпьютерных систем.

Программное обеспечение суперкомпьютеров

Наиболее распространёнными программными средствами суперкомпьютеров, так же, как и параллельных или распределённых компьютерных систем, являются интерфейсы программирования приложений (API) на основе MPI и PVM, и решения на базе открытого программного обеспечения, наподобие Beowulf и openMosix, позволяющего создавать виртуальные суперкомпьютеры даже на базе обыкновенных рабочих станций и персональных компьютеров. Для быстрого подключения новых вычислительных узлов в состав узкоспециализированных кластеров применяются технологии наподобие ZeroConf. Примером может служить реализация рендеринга в программном обеспечении Shake, распространяемом компанией Apple. Для объединения ресурсов компьютеров, выполняющих программу Shake, достаточно разместить их в общем сегменте локальной вычислительной сети.

В настоящее время границы между суперкомпьютерным и общеупотребимым программным обеспечением сильно размыты и продолжают размываться ещё более вместе с проникновением технологий параллелизации и многоядерности в процессорные устройства персональных компьютеров и рабочих станций. Исключительно суперкомпьютерным программным обеспечением сегодня можно назвать лишь специализированные программные средства для управления и мониторинга конкретных типов компьютеров, а также уникальные программные среды, создаваемые в вычислительных центрах под «собственные», уникальные конфигурации суперкомпьютерных систем.

Шедевр тульского оружейного завода

Как только охотники нашей страны не именовали это добычливое ружье! Разработанную в середине прошлого века под руководством Березина Ю. И. легендарную промысловку они ласково называли и просто «двадцаткой», и «эмцешкой», и «берданкой». С этим ружьем, между прочим, сразу же ставшим дефицитным и популярным, отечественные промысловики добывали любую живность, обитающую на территории нашей страны, от белки и до лося. Универсальность и легкость, привлекательность палитры малых калибров, специфика конструкции МЦ 20-01 – все эти факторы стали решающими при выборе данного ружья для нескольких поколений советских охотников.

Внешние ссылки и литература

  • Абрамов Е. Диверсионные десанты морской пехоты Северного флота в 1941–1944 годах // Диверсанты Второй мировой / ред.-сост. Г. Пернавский. — М.: «Яуза», «Эксмо», 2008. — С. 175–251. — 352 с. — (Военно-исторический сборник). — 5000 экз. — ISBN 978-5-699-31043-2.
  • Абрамов Е. П. Подвиг морской пехоты: «Стой насмерть!». — М.: «Яуза», «Эксмо», 2013. — 416 с. — (Сталинский спецназ. Морпехи). — 2500 экз. — ISBN 978-5-699-62623-6.

Вооружение танка Т-62а

А теперь подробнее

Наше Солнце относится к звездам главной последовательности, которые еще называют нормальными. Среди таких звезд есть самые маленькие — красные карлики (красными их называют из-за тусклого красноватого оттенка). Их эволюция дальше не продолжается, они остаются в таком состоянии навсегда.

Красные гиганты — это звезды, у которых начала гореть оболочка. Они становятся больше, ярче и при этом холоднее. Солнце станет красным гигантом через 5 миллиардов лет. Внешние слои оболочки постепенно сгорают, их остатки развеиваются звездным ветром, и остается одно ядро — белый карлик. Белые карлики настолько массивны, что если бы мы могли взять всего лишь чайную ложку вещества, из которого они состоят, и поместить его на Землю, она весила бы больше тонны. Они угасают очень долго, по нашим меркам — вечность.

Когда частицы, находящиеся в атмосфере звезды, разгоняются до определенной скорости, способной преодолеть притяжение, они выбрасываются в межзвездное пространство. Так образуется звездный ветер

Крупные массивные звезды, когда выгорают их ядро и оболочка, взрываются, превращаясь в сверхновые. После мощнейшего взрыва, потрясающего все вокруг, на месте сверхновой остается либо нейтронная звезда, либо черная дыра.

Нейтронные звезды — это небольшие образования с огромной массой. Они меньше и тяжелее белых карликов. Чайная ложка такой звезды весила бы на нашей планете миллиард тонн. Среди нейтронных звезд встречаются пульсары — это намагниченные звезды, которые вращаются с бешеной скоростью, до сотни раз за секунду, и излучают пучки энергии.

Распространение во Вселенной

Большая часть звёзд, наблюдаемые невооружённым глазом – голубые или белые. На основании этого у наблюдателя складывается неверное впечатление, будто таких объектов больше всего во Вселенной. На самом деле наиболее распространёнными являются красные крошечные светила. Их просто не видно невооружённым глазом. Интересно, что красные карлики составляют около 80 % всего звёздного населения Галактики.

Ближайшая к Солнцу звезда рассматриваемого класса – Проксима Центавра. Она находится на расстоянии свыше четырёх световых лет от Земли (или 40 трлн. км). Её радиус составляет 15% от солнечного, а масса – 12%. Видимая звёздная величина этого космического объекта – 11.

В наблюдаемой части Вселенной находится слишком мало красных карликов, которые вовсе не содержат металлов. Между тем схема Большого взрыва предполагает, что в самых первых звёзд должны быть только легчайшие элементы и только немного лития. Если бы среди этих светил были красные карлики, то они были видимыми. Но такого не происходит. Учёные объясняют это тем, что красные карлики не могут формироваться и запустить термоядерную реакцию без участия металлов. Вот почему первые звёзды были очень огромными и тяжёлыми. Выбросив большое количество металлов, они погибли. Тяжёлые элементы пошли на образование более лёгких и крохотных звёзд.

Применение

Суперкомпьютеры используются во всех сферах, где для решения задачи применяется численное моделирование; там, где требуется огромный объём сложных вычислений, обработка большого количества данных в реальном времени, или решение задачи может быть найдено простым перебором множества значений множества исходных параметров (см. Метод Монте-Карло).

Совершенствование методов численного моделирования происходило одновременно с совершенствованием вычислительных машин: чем сложнее были задачи, тем выше были требования к создаваемым машинам; чем быстрее были машины, тем сложнее были задачи, которые на них можно было решать. Поначалу суперкомпьютеры применялись почти исключительно для оборонных задач: расчёты по ядерному и термоядерному оружию, ядерным реакторам. Потом, по мере совершенствования математического аппарата численного моделирования, развития знаний в других сферах науки — суперкомпьютеры стали применяться и в «мирных» расчётах, создавая новые научные дисциплины, как то: численный прогноз погоды, вычислительная биология и медицина, вычислительная химия, вычислительная гидродинамика, вычислительная лингвистика и проч., — где достижения информатики сливались с достижениями прикладной науки.

Ниже приведён далеко не полный список областей применения суперкомпьютеров:

  • Математические проблемы:

    • Криптография
    • Статистика
  • Физика высоких энергий:

    • процессы внутри атомного ядра, физика плазмы, анализ данных экспериментов, проведённых на ускорителях
    • разработка и совершенствование атомного и термоядерного оружия, управление ядерным арсеналом, моделирование ядерных испытаний
    • моделирование жизненного цикла ядерных топливных элементов, проекты ядерных и термоядерных реакторов
  • Наука о Земле:

    • прогноз погоды, состояния морей и океанов
    • предсказание климатических изменений и их последствий
    • исследование процессов, происходящих в земной коре, для предсказания землетрясений и извержений вулканов
    • анализ данных геологической разведки для поиска и оценки нефтяных и газовых месторождений, моделирование процесса выработки месторождений
    • моделирование растекания рек во время паводка, растекания нефти во время аварий

Вычислительная биология: фолдинг белка, расшифровка ДНК

Вычислительная химия и медицина: изучение строения вещества и природы химической связи как в изолированных молекулах, так и в конденсированном состоянии, поиск и создание новых лекарств

  • Физика:

    • газодинамика: турбины электростанций, горение топлива, аэродинамические процессы для создания совершенных форм крыла, фюзеляжей самолетов, ракет, кузовов автомобилей
    • гидродинамика: течение жидкостей по трубам, по руслам рек
    • материаловедение: создание новых материалов с заданными свойствами, анализ распределения динамических нагрузок в конструкциях, моделирование крэш-тестов при конструировании автомобилей
  • в качестве сервера для искусственных нейронных сетей
  • создание принципиально новых способов вычисления и обработки информации (Квантовый компьютер, Искусственный интеллект)

Численность

Отзывы

Ссылки

Применение

Суперкомпьютеры используются во всех сферах, где для решения задачи применяется численное моделирование; там, где требуется огромный объём сложных вычислений, обработка большого количества данных в реальном времени, или решение задачи может быть найдено простым перебором множества значений множества исходных параметров (см. Метод Монте-Карло).

Совершенствование методов численного моделирования происходило одновременно с совершенствованием вычислительных машин: чем сложнее были задачи, тем выше были требования к создаваемым машинам; чем быстрее были машины, тем сложнее были задачи, которые на них можно было решать. Поначалу суперкомпьютеры применялись почти исключительно для оборонных задач: расчёты по ядерному и термоядерному оружию, ядерным реакторам. Потом, по мере совершенствования математического аппарата численного моделирования, развития знаний в других сферах науки — суперкомпьютеры стали применяться и в «мирных» расчётах, создавая новые научные дисциплины, как то: численный прогноз погоды, вычислительная биология и медицина, вычислительная химия, вычислительная гидродинамика, вычислительная лингвистика и проч., — где достижения информатики сливались с достижениями прикладной науки.

Ниже приведён далеко не полный список областей применения суперкомпьютеров:

  • Математические проблемы:

    • Криптография
    • Статистика
  • Физика высоких энергий:

    • процессы внутри атомного ядра, физика плазмы, анализ данных экспериментов, проведённых на ускорителях
    • разработка и совершенствование атомного и термоядерного оружия, управление ядерным арсеналом, моделирование ядерных испытаний
    • моделирование жизненного цикла ядерных топливных элементов, проекты ядерных и термоядерных реакторов
  • Наука о Земле:

    • прогноз погоды, состояния морей и океанов
    • предсказание климатических изменений и их последствий
    • исследование процессов, происходящих в земной коре, для предсказания землетрясений и извержений вулканов
    • анализ данных геологической разведки для поиска и оценки нефтяных и газовых месторождений, моделирование процесса выработки месторождений
    • моделирование растекания рек во время паводка, растекания нефти во время аварий

Вычислительная биология: фолдинг белка, расшифровка ДНК

Вычислительная химия и медицина: изучение строения вещества и природы химической связи как в изолированных молекулах, так и в конденсированном состоянии, поиск и создание новых лекарств

  • Физика:

    • газодинамика: турбины электростанций, горение топлива, аэродинамические процессы для создания совершенных форм крыла, фюзеляжей самолетов, ракет, кузовов автомобилей
    • гидродинамика: течение жидкостей по трубам, по руслам рек
    • материаловедение: создание новых материалов с заданными свойствами, анализ распределения динамических нагрузок в конструкциях, моделирование крэш-тестов при конструировании автомобилей
  • в качестве сервера для искусственных нейронных сетей
  • создание принципиально новых способов вычисления и обработки информации (Квантовый компьютер, Искусственный интеллект)

Piz Daint

Суперкомпьютер Piz Daint достаточно долго (с 2013 до 2018 года) занимал третье место в рейтинге самых мощных вычислительных систем в мире. В то же время он остается самым производительным компьютером Европы. Стоимость проекта составила около 40 млн швейцарских франков.

Модель получила название в честь одноименной территории в Швейцарских Альпах и находится в национальном суперкомпьютерном центре. Оборудование, из которого состоит СуперЭВМ, располагается в 28 стойках. Для работы техники требуется 2,3 МВт электричества, и по этому показателю Piz Daint обеспечивает лучшую удельную производительность – 9,2 Пфлопс/МВт.

В составе ЭВМ есть другой суперкомпьютер Piz Dora, сначала работавший отдельно. После объединения мощностей швейцарские разработчики получили вычислительную систему с 362 тысячами ядер (процессоры Xeon E5-2690v3) номинальной производительностью 21,23 Пфлопс. Максимальная скорость работы – 27 Пфлопс.

Основные задачи суперкомпьютера – расчеты для исследований в области геофизики, метеорологии, физике и климатологии. Одно из приложений для ЭВМ, COSMO, представляет собой метеорологическую модель и используется метеослужбами Германии и Швейцарии для получения высокоточных прогнозов погоды.

История супер-ЭВМ: появление суперкомпьютеров в 1960-х гг.

Первый суперкомпьютер был создан в компании Control Data Corporation (CDC) под руководством Сеймура Крея. Одним из первых разработанных в данной фирме компьютеров был Cray CDC 1604. В нем были заменены вакуумные электронные лампы транзисторами, он быстро завоевал популярность в научных лабораториях. Позже компания CDC разработала супер-ЭВМ CDC 7600 и начала работы над CDC 8600. В 1964 г. самым быстрым компьютером на Земле стал Stretch, который мог выполнять три миллиона операций с плавающей запятой в секунду (FLOPS).

Одним из преимуществ ЭВМ, разработанных под руководством Сеймура Крея, была плотная упаковка электронных компонентов, благодаря чему увеличивалась производительность компьютеров. Все компьютеры Сеймура Крея были оптимизированы для требовательных научных приложений, например, решения дифференциальных уравнений, матричных вычислений, сейсмического анализа, линейного программирования и других подобных задач.

История

23 мая 2019 года RIKEN объявил, что суперкомпьютер будет называться Fugaku. В августе 2019 года был представлен логотип Fugaku; на нем изображена гора Фудзи , символизирующая «высокие характеристики Фугаку» и «широкий круг пользователей». В ноябре 2019 года прототип Fugaku занял первое место в списке Green500 . Отгрузка стоек для оборудования на завод RIKEN началась 2 декабря 2019 года и завершилась 13 мая 2020 года. В июне 2020 года Fugaku стал самым быстрым суперкомпьютером в мире в списке TOP500 , вытеснив IBM Summit .

Фугаку использовался для исследования масок, связанных с пандемией COVID-19 .

Внешние ссылки и литература

  • Абрамов Е. Диверсионные десанты морской пехоты Северного флота в 1941–1944 годах // Диверсанты Второй мировой / ред.-сост. Г. Пернавский. — М.: «Яуза», «Эксмо», 2008. — С. 175–251. — 352 с. — (Военно-исторический сборник). — 5000 экз. — ISBN 978-5-699-31043-2.
  • Абрамов Е. П. Подвиг морской пехоты: «Стой насмерть!». — М.: «Яуза», «Эксмо», 2013. — 416 с. — (Сталинский спецназ. Морпехи). — 2500 экз. — ISBN 978-5-699-62623-6.

Знакомьтесь, Christofari

Сбербанк создал самый производительный суперкомпьютер в России. Об этом CNews сообщили в пресс-службе банка. Новинка названа Christofari в честь Николая Кристофари, который стал первым клиентом российских сберкасс в 1842 г. Компьютер был представлен в рамках международной конференции AI Journey, которая посвящена развитию и использованию искусственного интеллекта.

По производительности Christofari многократно превосходит обычные машины и почти втрое – предыдущий самый быстрый суперкомпьютер страны «Ломоносов-2». Особенности архитектуры и высокая вычислительная мощность новинки, как ожидается, позволят в кратчайшие сроки решать задачи обучения моделей, основанных на глубоких нейронных сетях.

Сбербанк объявил о создании самого мощного российского суперкомпьютера

Ресурсы Christofari будут доступны пользователям облачного сервиса компании SberCloud (входит в экосистему Сбербанка) с 12 декабря 2019 г. Предоставление ресурсов суперкомпьютера в облаке, по мнению представителей Сбербанка, даст пользователям возможность разрабатывать и использовать алгоритмы искусственного интеллекта. Стоимость услуги будет зависеть от заказанной мощности.

В культуре

Писатель Борис Акунин написал детектив «Батальон ангелов», действие которого происходит в 1917 году в женском батальоне смерти. Из реальных прототипов в книге показаны дочь адмирала Скрыдлова (под именем Александра Шацкая) и Мария Бочкарёва.

В феврале 2015 года в кинопрокат вышел российский художественный фильм «Батальонъ».

23 июля 2017 г., в день столетия боевого крещения женского батальона, в белорусской деревне Новоспасск Сморгонского района Гродненской области состоялась закладка памятной доски на месте установки будущего памятника женщинам-ударницам[источник не указан 418 дней].

Береговые ракетные комплексы «Редут»

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector