Получение термоядерной энергии синтезом в реакторе легких элементов
Содержание:
- Разработка недели: самовосстанавливающийся материал на основе кальмара
- Как это работает
- Термоядерные реакторы в мире
- Шаг 1: Сборка вакуумной камеры
- ITER
- Модификации
- Шаг 5: Высокое напряжение
- Структура комплекса ИТЕР
- Похожие новости
- Статья недели: ИИ помог обнаружить китайских рыбаков-браконьеров
- Крафт[править | править код]
- Кабина ГАЗ-4301
- Тема недели: термоядерный реактор ITER
- Не только ITER
- Холодный ядерный синтез
- Низкоэнергетические ядерные реакции
Разработка недели: самовосстанавливающийся материал на основе кальмара
Ученые из американского Университета Пенсильвании и немецкого Института интеллектуальных систем им. Макса Планка создали самовосстанавливающийся материал на основе зубов кальмара. Разработка в первую очередь пригодится при производстве автоматических приводов, которые часто ломаются из-за того, что постоянно находится в движении.
Зубы кальмаров состоят из твердых и мягких компонентов, а также особых белков, которые восстанавливают поврежденный зуб. Ученые выделили это вещество и при помощи бактериального биореактора создали синтетический полимер. Если нагреть это вещество, оно может «залечить» раны и вернуться в исходную форму за несколько секунд. Еще одно преимущество материала в том, что он биоразлагаемый и не наносит вреда окружающей среде.
Как это работает
Термоядерная энергетика пытается скопировать процессы, которые происходят внутри звезд: там при сверхвысоких температурах и давлении сливаются ядра изотопов водорода и выделяют огромную энергию.
Чтобы достичь этого на Земле, необходимы особые условия (например, температура в 10 раз большая, чем в ядре Солнца) – их создают в термоядерном реакторе. В его основе, по крайней мере, по самой распространенной схеме, которую использует ITER, – токамак, по форме напоминающая бублик вакуумная камера с магнитными катушками. Первые токамаки появились в СССР еще в 1960-х, для ITER построят самый большой токамак в мире объемом 830 м3.
В токамак запускают дейтерий и тритий и разогревают до температур свыше 150 миллионов градусов Цельсия. Газ превращается в плазму, а чтобы плазма такой температуры не сожгла все вокруг, ее удерживают на расстоянии от стенок магнитным полем; через саму плазму пропускают ток. Мощное магнитное поле обеспечивают в свою очередь сверхпроводящие магниты, которые нужно охладить в вакуумной камере до практически абсолютного нуля – 268°C. Физически же они будут находиться буквально в полуметре от раскаленной до 150 000 000°C плазмы. Обеспечить беспроблемную работу техники в таких условиях – сложнейшая инженерная задача.
Современные токамаки выделяют меньше энергии, чем расходуется на нагрев системы, для генерации их пока приспособить не получается. Лучший результат – у британского JET, который возвращает до 67% затраченной энергии. За счет масштаба конструкции ITER (это будет громадина высотой с девятиэтажный дом, примерно такого же диаметра) создатели рассчитывают, что реактор сможет выделять энергии в десять раз больше, чем расходуется на нагрев плазмы (отдавать 500 МВт с 50 МВт). Этот момент – принципиальный для построения термоядерных электростанций в будущем.
Но ITER не будет производить электричество: вся выделенная энергия уйдет лишь на нагрев стенок токамака. Хотя если эксперименты с ITER пройдут успешно, следующим этапом (с 2030 года) станет прототип термоядерного реактора для электростанций, DEMO – они должны появиться в 2040-50-х годах. О желании построить такие реакторы заявили Индия, Россия, Южная Корея и Япония.
Модель реактора ITER
Важнейшая цель ITER – показать возможность генерации энергии термоядерным реактором. Для этого необходимо будет обеспечить управляемое производство “горящей плазмы” (с ней реакция синтеза будет самоподдерживающейся) и достичь самовоспроизводства трития, достаточно редкого изотопа, использующегося в качестве топлива. Кроме того, ITER должен продемонстрировать, насколько готовы современные технологии к строительству коммерческих термоядерных электростанций, а также позволит оценить их надежность и безопасность.
Безопасность – одно из ключевых преимуществ термоядерных реакторов над привычными ядерными. Здесь невозможна цепная реакция с последствиями: в случае проблем плазма мгновенно остынет и затухнет, отмечают в ITER.
Куда лучше обстоят дела и с радиоактивностью топлива: тритий, слабый источник бета-излучения, будет генерироваться прямо в реакторе. Конструкция реактора при этом предполагает несколько барьеров для возникающих в процессе работы радиоактивных веществ. Период полураспада радиоактивных отходов для большинства изотопов в термоядерном реакторе составляет около 10 лет, тогда как для отдельных компонентов отработанного ядерного топлива эти значения могут составлять тысячи и даже миллионы лет.
Термоядерные реакторы в мире
Начиная с 1970 годов, начало коммерческого использования энергии синтеза постоянно отодвигалось на 40 лет. Однако в последние годы произошло многое, благодаря чему этот срок может быть сокращен.
Построено несколько токамаков, в том числе европейский JET, британский MAST и экспериментальный термоядерный реактор TFTR в Принстоне, США. Международный проект ITER в настоящее время находится в стадии строительства в Кадараше, Франция. Он станет самым крупным токамаком, когда заработает в 2020 годах. В 2030 г. в Китае будет построен CFETR, который превзойдет ITER. Тем временем КНР проводит исследования на экспериментальном сверхпроводящем токамаке EAST.
Термоядерные реакторы другого типа – стеллаторы – также популярны у исследователей. Один из крупнейших, LHD, начал работу в японском Национальном институте термоядерного синтеза в 1998 году. Он используется для поиска наилучшей магнитной конфигурации удержания плазмы. Немецкий Институт Макса Планка в период с 1988 по 2002 год проводил исследования на реакторе Wendelstein 7-AS в Гархинге, а в настоящее время – на Wendelstein 7-X, строительство которого длилось более 19 лет. Другой стелларатор TJII эксплуатируется в Мадриде, Испания. В США Принстонская лаборатория физики плазмы (PPPL), где был построен первый термоядерный реактор данного типа в 1951 году, в 2008 году остановила строительство NCSX из-за перерасхода средств и отсутствия финансирования.
Кроме того, достигнуты значительные успехи в исследованиях инерциального термоядерного синтеза. Строительство National Ignition Facility (NIF) стоимостью 7 млрд $ в Ливерморской национальной лаборатории (LLNL), финансируемое Национальной администрацией по ядерной безопасности, было завершено в марте 2009 г. Французский Laser Mégajoule (LMJ) начал работу в октябре 2014 года. Термоядерные реакторы используют доставленные лазерами в течение нескольких миллиардных долей секунды около 2 млн джоулей световой энергии в цель размером в несколько миллиметров для запуска реакции ядерного синтеза. Основной задачей NIF и LMJ являются исследования по поддержке национальных военных ядерных программ.
Шаг 1: Сборка вакуумной камеры
Для проекта потребуется изготовить вакуумную камеру высокого качества.
Приобретите две полусферы из нержавеющей стали, фланцы для вакуумных систем. Просверлим отверстия для вспомогательных фланцев, а затем сварим всё это вместе. Между фланцами располагаются уплотнительные кольца из мягкого металла. Если вы раньше никогда не варили, было бы разумно, чтобы кто-то с опытом сделал эту работу за вас. Поскольку сварные швы должны быть безупречны и без дефектов. После тщательно очистите камеру от отпечатков пальцев. Поскольку они будут загрязнять вакуум и будет трудно поддерживать стабильность плазмы.
ITER
В 1985 г. Советский Союз предложил построить токамак следующего поколения совместно с Европой, Японией и США. Работа велась под эгидой МАГАТЭ. В период с 1988 по 1990 год были созданы первые проекты Международного термоядерного экспериментального реактора ITER, что также означает «путь» или «путешествие» на латыни, с целью доказать, что синтез может вырабатывать больше энергии, чем поглощать. Канада и Казахстан также приняли участие при посредничестве Евратома и России соответственно.
Через 6 лет совет ITER одобрил первый комплексный проект реактора на основе устоявшейся физики и технологии стоимостью 6 млрд $. Тогда США вышли из консорциума, что вынудило вдвое сократить затраты и изменить проект. Результатом стал ITER-FEAT стоимостью 3 млрд долл., но позволяющий достичь самоподдерживающей реакции и положительного баланса мощности.
В 2003 г. США вновь присоединились к консорциуму, а Китай объявил о своем желании в нем участвовать. В результате в середине 2005 года партнеры договорились о строительстве ITER в Кадараше на юге Франции. ЕС и Франция вносили половину от 12,8 млрд евро, а Япония, Китай, Южная Корея, США и Россия – по 10% каждый. Япония предоставляла высокотехнологичные компоненты, содержала установку IFMIF стоимостью 1 млрд евро, предназначенную для испытания материалов, и имела право на возведение следующего тестового реактора. Общая стоимость ITER включает половину затрат на 10-летнее строительство и половину – на 20 лет эксплуатации. Индия стала седьмым членом ИТЭР в конце 2005 г.
Эксперименты должны начаться в 2018 г. с использованием водорода, чтобы избежать активации магнитов. Использование D-T плазмы не ожидается ранее 2026 г.
Цель ITER – выработать 500 МВт (хотя бы в течение 400 с), используя менее 50 МВт входной мощности без генерации электроэнергии.
Двухгигаваттная демонстрационная электростанция Demo будет производить крупномасштабное производство электроэнергии на постоянной основе. Концептуальный дизайн Demo будет завершен к 2017 году, а его строительство начнется в 2024 году. Пуск состоится в 2033 году.
Модификации
Шаг 5: Высокое напряжение
Если вы можете приобрести блок питания, подходящий для использования в термоядерном реакторе, то проблем возникнуть не должно. Просто возьмите выходной отрицательный 40 кВ электрод и прикрепите его к камере с большим балластным резистором высокого напряжения 50-100 кОм.
Проблема заключается в том, что часто затруднительно (если не невозможно) найти соответствующий источник постоянного тока с ВАХ (вольт-амперной характеристикой) которая полностью бы соответствовала заявленным требованиям ученого-любителя.
На фото представлена пара высокочастотных ферритовых трансформаторов, с 4-ступенчатым множителем (находится за ними).
Структура комплекса ИТЕР
Вышеописанная «в двух словах» конструкция токамака представляет собой сложнейший инновационный механизм, собираемый усилиями нескольких стран. Однако, для ее полноценной работы требуется целый комплекс построек, расположенных вблизи токамака. В их числе:
- Система управления, связи и доступа к данным (Control, Data Access and Communication) – CODAC. Находится в ряде зданий комплекса ИТЕР.
- Хранилища топлива и топливная система – служит для доставки топлива в токамак.
- Вакуумная система – состоит из более чем четырехсот вакуумных насосов, задача которых – выкачка продуктов термоядерной реакции, а также различных загрязнений из вакуумной камеры.
- Криогенная система – представлена азотным и гелиевым контуром. Гелиевый контур будет нормализировать температуру в токамаке, работа (а значит и температура) которого протекает не непрерывно, а импульсно. Азотный контур будет охлаждать тепловые экраны криостата и сам гелиевый контур. Также будет присутствовать водяная система охлаждения, которая направлена на понижение температуры стенок бланкета.
- Электропитание. Токамаку потребуется примерно 110 МВт энергии для постоянной работы. Для этого будут проведены линии электропередач в километр, которые будут подключены к французской промышленной сети. Стоит напомнить, что экспериментальная установка ИТЭР – не предусматривает выработку энергии, а работает лишь в научных интересах.
Элементы комплекса ИТЭР
Похожие новости
26/01/2019
Сотни миллионов лет назад минералы под земной поверхностью могли сохранять в себе следы загадочного вещества. Осталось только до них добраться. Больше двух десятков подземных лабораторий, разбросанных по всему миру, заняты поиском темной материи.
1592
24/10/2019
Исследовательская работа — часть любого бизнеса, и на каждом этапе исследования различаются и масштабами, и задачами. Но как вычислить эффект, который они производят? О разных видах исследований, типичных проблемах при их проведении и специфике Росатома рассказывает президент корпоративного и правительственного сектора аналитической компании Elsevier в России Сергей Ревякин.
1048
12/04/2019
12 апреля 1961 года Юрий Гагарин совершил первый полет в космос — добродушная улыбка летчика и его бодрое «Поехали!» стали триумфом советской космонавтики. Чтобы этот полет состоялся, ученые по всей стране ломали головы, как же сделать такую ракету, которая бы выдержала все опасности неизведанного космоса, — здесь не обошлось без идей ученых Сибирского отделения Академии наук.
1234
29/10/2018
В программе ОТР «Большая наука. Великое в малом» директор Института ядерной физики имени Г. И. Будкера СО РАН академик Павел Логачев рассказал о том, какую роль в развитии научных исследований играет «Фабрика С-тау» и чем обусловлено ее название.
1278
11/12/2018
Академик РАН, научный руководитель Института теплофизики им. С. С. Кутателадзе СО РАН Сергей Алексеенко стал в этом году лауреатом международной премии «Глобальная энергия». Награда присуждается ему за подготовку теплофизических основ для создания современных энергетических и энергосберегающих технологий, которые позволяют проектировать экологически безопасные тепловые электростанции (за счет моделирования процессов горения газа, угля и жидкого топлива).
1841
16/04/2019
Зачем нужен Сибирский национальный центр высокопроизводительных вычислений, обработки и хранения данных — СНЦ ВВОД? Откуда придут деньги на его создание? Как этот проект связан с синхротроном СКИФ? С другими проектами «Академгородка 2.
1456
28/02/2018
8 февраля в ходе визита Президента РФ Владимира Владимировича Путина в Новосибирск ученые обсуждали необходимость создания в России новых источников синхротронного излучения (СИ). Кому, кроме физиков, нужны такие установки и чем они отличаются от коллайдеров? Что можно изучать с их помощью? В каких ещё странах есть источники СИ, и зачем они нужны в России? Об этом «Науке в Сибири» рассказал научный сотрудник Института геологии и минералогии им.
5330
20/11/2019
Байкальский нейтринный эксперимент послужил к созданию одного из ведущих в мире центров исследования космических лучей — TAIGA. Сейчас это уже несколько разнообразных установок, и работы только ширятся.
651
29/12/2017
1. Сельское хозяйство. В 2010-е гг. Россия вернула себе позицию крупнейшего сельхозэкспортёра в мире, которую она занимала ещё в начале XX века. При этом Россия занимает лишь четвёртое место в мире по площади обрабатываемых сельхозземель.
2068
Статья недели: ИИ помог обнаружить китайских рыбаков-браконьеров
Ученые из Южной Кореи, Японии, Австралии и США смогли обнаружить 900 китайских судов, которые незаконно ловили тихоокеанского кальмара в водах КНДР. Согласно резолюции Совбеза ООН, с 2017 года эта страна не должна разрешать иностранным судам рыбачить на своей территории.
Научный журнал Science Advances опубликовал подробную статью об этом. Чтобы обнаружить браконьеров, ученые использовали Автоматическую идентификационную систему (АИС), а также несколько видов спутниковых снимков. С помощью АИС корабли передают данные о своем местоположении и курсе. Этой системой пользуются не все суда, поэтому основную информацию исследователи получили, проанализировав изображения. Браконьеры часто используют яркие лампы, чтобы ночью привлечь кальмаров на поверхность воды. Ученые натренировали нейросеть распознавать свет на поверхности океана. Затем информацию проверяли при помощи снимков высокой четкости. Помимо крупных судов, нейросеть также нашла 3 тыс. небольших рыбацких лодок.
Ученые считают, что их метод поможет бороться с браконьерством, а значит, защитить многие виды рыб от угрозы вымирания.
Крафт[править | править код]
Для постройки работающей конструкции реактора потребуются следующие блоки:
Ингредиенты | Процесс | Результат | Описание |
---|---|---|---|
Компьютер +Микросхема потока энергии +Катушка термоядерного реактора |
Консоль управления термоядерным реактором | Позволяет производить операции с термоядерным реактором. Реактор включится сразу как только будут загружены реагенты и требуемая энергия. Для ручного управления установите регулятор для механизмов и прикрепите к нему рычаг. | |
Микросхема потока энергии +Сверхпроводник (предмет) +Сверхпроводниковый конденсатор |
Инжектор энергии | Хранит 10 000 000 еЭ для использования термоядерным реактором. У каждого блока своё хранилище энергии и запитывать их нужно все сразу. | |
Микросхема потока энергии +Сундук +Высокотехнологичный механизм +Помпа илиМодуль помпы |
Инжектор материалов | Впрыскивает в термоядерный реактор жидкости. Внутренняя ёмкость составляет 10 вёдер (капсул), вдобавок в верхний слот можно положить стопку капсул, которые будут загружаться автоматически. Кроме того, загруженные жидкости можно вылить обратно в капсулы. | |
Микросхема потока энергии +Высокотехнологичный механизм +Сундук +Помпа илиМодуль помпы |
Экстрактор материалов | Выводит синтезированные материалы из термоядерного реактора. | |
Нихромовая нагревательная спираль +Микросхема потока энергии +Сверхпроводник (предмет) +Высокотехнологичный механизм +Иридиевый отражатель нейтронов |
Катушка термоядерного реактора | Из катушек строится «кольцо» реактора.Судя по всему, это аналог кольцевой камеры Токамак. |
Кабина ГАЗ-4301
На автомобиле установлена двухдверная и двухместная цельнометаллическая кабина, оснащённая местами для крепления ремней безопасности. Отопитель кабины – с двумя включёнными в систему смазки двигателя радиаторами. Независимый отопитель – воздушный, двухрежимный, работающий на дизельном топливе.
Сиденья у водителя и пассажира раздельные, в отличие от общего «дивана», которыми оснащались ГАЗ-52 и ГАЗ-53. Водительское кресло снабжено подвеской, которая состоит из цилиндрической пружины и гидравлического амортизатора.
Для обеспечения удобной посадки водителя любой комплекции. Изменение продольного положения сиденья обеспечивается салазками, которые имеют восемь фиксированных положений. Общий ход салазок составляет 136 мм.
Подушка сиденья имеет три фиксированных положения, которые обеспечивают уровень её наклона в 4, 7 и 10 градусов к горизонтали. Изменение угла наклона спинки сиденья обеспечивается шарнирным механизмом, который бесступенчато изменяет степень наклона данной спинки. Пассажирское сиденье в кабине ГАЗ-4301 выполнено откидным, с целью облегчения свободного доступа к независимому отопителю.
Тема недели: термоядерный реактор ITER
28 июля 2020 года в исследовательском центре Кадараш во Франции начали собирать экспериментальный термоядерный реактор типа токамак — сокращенно от «тороидальная камера с магнитными катушками». Строительство реактора планируют завершить в 2025 году. В проекте ITER участвуют ЕС, Индия, Китай, Южная Корея, Россия, США и Япония.
Термоядерный синтез — это реакция, в ходе которой легкие атомы объединяются в более тяжелые. В результате высвобождается энергия. Такой процесс постоянно происходит на Солнце и других звездах. Если ученые смогут построить работающий реактор, люди получат источник неограниченной и «зеленой» энергии.
Сам токамак по форме похож на полый бублик, из которого откачали воздух. В качестве топлива для реактора используют изотопы (подвиды) водорода дейтерий и тритий. Их помещают в токамак и с помощью электрического тока разогревают до температуры в несколько млн градусов. Тогда водород превращается в плазму — заряженный газ, в котором электроны оторваны от ядер атомов. Вся эта масса удерживается внутри реактора при помощи очень мощных магнитов. При температуре 150 млн °C (в десять раз жарче, чем на Солнце) начинается термоядерная реакция. Дейтерий и тритий сливаются и образуют атом гелия-4 и один нейтрон. Нейтроны вылетают за пределы магнитной ловушки и, сталкиваясь со стенками реактора, нагревают воду внутри них. В результате образуется пар, который вращает турбины.
Макет реактора ITER
(Фото: ITER)
Первую плазму на реакторе ITER планируют получить сразу после окончания строительства, в 2025 году. Однако эксперименты с термоядерной реакцией проведут только в 2035 году. Если они пройдут успешно, начнется выпуск термоядерных реакторов DEMO, которые можно будет использовать в коммерческих целях. ITER не единственный в мире проект, цель которого — получить термоядерную энергию. Токамаки есть в Китае, Великобритании и США.
Некоторые компании предлагают и другие типы реакторов. Основной конкурент токамака — стеллератор Wendelstein 7-X, который построили в Институте физики плазмы им. Макса Планка в немецком Грайфсвальде. Если токамак удерживает плазму в центре при помощи мощных магнитов, то стеллератор делает это благодаря своей сложной форме, напоминающей объемную ленту Мебиуса.
Макет стеллератора. Желтым показана плазма, синим — магнитное поле
(Фото: Max-Planck Institut für Plasmaphysik)
Американский стартап TAE Technologies (ранее Tri Alpha Energy) предложил реактор вытянутой формы. В качестве топлива компания использует водород и бор-11. При взаимодействии эти химические элементы не образуют нейтроны, а значит, не создают радиацию. Топливо на большой скорости подается в реактор с двух сторон. От столкновения оно нагревается и превращается в плазму. Минус такого устройства в том, что для его работы нужна очень высокая температура, примерно в 3 млрд °C.
Еще один вид реактора разрабатывает канадская компания General Fusion. Он представляет собой сферу, внутри которой находится расплавленный свинец. К устройству подключены паровые молотки, которые синхронно бьют по сплаву. В металле есть небольшой желобок, в который загружают горячую смесь дейтерия и трития. При каждом ударе молотков происходит микровзрыв, который провоцирует термоядерную реакцию.
Индустрия 4.0
Что такое индустрия 4.0 и что нужно о ней знать
Не только ITER
Бублик-токамак – не единственный вариант для термоядерного синтеза, рассматриваемый наукой. Альтернативные способы изучают не только в крупных государственных учреждениях, но и в небольших стартапах. Их сейчас в мире, по оценкам Bloomberg, больше двух десятков. Однако пока о крупных прорывах и контролируемом производстве энергии в коммерческих масштабах пока говорить не приходится.
Ближайший аналог токамака – стелларатор, также торообразная, “бубликоподобная” система, при всем своем сходстве не требующая поддерживать в плазме ток. У подобной установки свои плюсы и минусы, самая крупная и успешная на данный момент – немецкая Wendelstein 7-Х. На ней немецкие исследователи установили ряд рекордов, хотя по характеристикам и масштабу до ITER ей далеко.
Стартап Commonwealth Fusion Systems, основанный выходцами из MIT, обещает построить гораздо меньший, более дешевый, при этом ненамного менее эффективный, чем ITER, реактор на токамаке – SPARC. Как это им удастся? Ученые надеются применить новейшие высокотемпературные сверхпроводники и собираются показать решения уже в ближайшие два года.
Еще один нестандартный вариант – термоядерный синтез с инерционным удержанием. В нем используются лазеры, со всех сторон “обжимающие” и нагревающие миниатюрную топливную капсулу дейтерия импульсами, имитируя процессы, происходящие при взрыве водородной бомбы. Крупнейшая в мире научная организация, применяющая этот подход, – Национальный комплекс лазерных термоядерных реакций (National Ignition Facility) в США, там для этих целей используют 193 пучка мощных лазеров.
Сотрудник Министерства энергетики США Стивен Экстрэнд (слева) во время визита в Национальный комплекс лазерных термоядерных реакций (National Ignition Facility) в городе Ливермор вместе с сотрудником центра Марком Джексоном, 29 мая 2009
Канадская General Fusion и американская Tri Alpha Energy используют собственные, еще более экзотические способы термоядерного синтеза, но, увы, до сих пор готовых к коммерческой эксплуатации решений пока никто не представил.
Холодный ядерный синтез
В марте 1989 года два исследователя, американец Стенли Понс и британец Мартин Флейшман, заявили, что они запустили простой настольный холодный термоядерный реактор, работающий при комнатной температуре. Процесс заключался в электролизе тяжелой воды с использованием палладиевых электродов, на которых ядра дейтерия концентрировались с высокой плотностью. Исследователи утверждают, что производилось тепло, которое можно было объяснить только с точки зрения ядерных процессов, а также имелись побочные продукты синтеза, включая гелий, тритий и нейтроны. Однако другим экспериментаторам не удалось повторить этот опыт. Большая часть научного сообщества не считает, что холодные термоядерные реакторы реальны.
Низкоэнергетические ядерные реакции
Инициированные претензиями на «холодный термоядерный синтез», исследования продолжились в области низкоэнергетических ядерных реакций, имеющих некоторую эмпирическую поддержку, но не общепринятое научное объяснение. По-видимому, для создания и захвата нейтронов используются слабые ядерные взаимодействия (а не мощная сила, как при делении ядер или их синтезе). Эксперименты включают проникновение водорода или дейтерия через каталитический слой и реакцию с металлом. Исследователи сообщают о наблюдаемом высвобождении энергии. Основным практическим примером является взаимодействие водорода с порошком никеля с выделением тепла, количество которого больше, чем может дать любая химическая реакция.