Список аварий на аэс по странам — list of nuclear power accidents by country

Содержание:

Эксперименты с атомом в довоенное время

В 1930х-1940х многие мировые ученые проводили фундаментальные радиохимические исследования, которые в будущем дали толчок возникновению атомных проектов.

В конце 1938 года немецкие физики обнаружили тепловыделение от цепной реакции атомов урана. Уже тогда было понятно, что перед учеными вещество невероятной мощи и силы, реакции которого требуют внимательного изучения. Все физики мира переключились на изучение проблем деления атома. Сразу было установлено, что атомы урана-238 делятся очень плохо, гораздо охотнее это делают частицы урана-235. Уран решили обогащать и повышать содержание 235х изотопов. Был найден и другой путь – работать с ураном – 238, который при определенных реакциях можно превратить в плутоний. А плутоний использовать как сырье для ядерных реакций. Физики-ядерщики в СССР, США и Европе в довоенное время работали в двух направлениях:

  • Обогащение урана-235
  • Переработка урана-238

С середины 1939 года США, Германия и Англия засекретили свои исследования по получению чистого урана и делению его атомов от Советского Союза. Обстановка в мире накалялась, развитые страны стали работать над урановыми проектами независимо друг от друга. С началом Второй мировой исследования ядерных реакций прекратили. Они возобновились осенью 1942го.

Типы реактивных двигателей

Все установки делятся на категории по используемому топливу для выработки энергии, по теплоносителю, замедлители, которая контролирует весь процесс проведения реакции. Для того чтобы показывать высокий уровень результативности, многие реакторы используют облегченную воду в виде Пара которая воздействует двумя разными способами.

Первый способ это подача теплого пара непосредственно в активной зоне. Уровень температуры такого энергоблока очень высок, в народе его называют кипящим блоком. Второй зависит от графитных материалов, с помощью которых вырабатывается газ, позволяющий отслеживать всю работу системы. На таком типе работы существует Балаковская станция.

[править] Принцип работы атомной электростанции

Атомная электростанция представляет собой комплекс технических сооружений, предназначенных для выработки электрической энергии путем использования энергии, выделяемой при контролируемой ядерной реакции. Атомные электростанции различаются по типу реактора (на быстрых и на медленных нейтронах), по виду отпускаемой энергии (АЭС и АТЭЦ), по количеству контуров (одноконтурные, двухконтурные, трехконтурные). В зависимости от типа конструкции в состав атомной электростанции могут входить: ядерный реактор, турбина, конденсатор, электрогенератор, парогенератор и др.

Ядерная реакция возникает при делении ядра атома. Ядра атомов разделяют нейтроны, которые попадающие в них извне. При этом возникают новые нейтроны и осколки деления, которые имеют огромную кинетическую энергию. Эта энергия передается теплоносителю, который поступает в парогенератор, где нагревает до кипения воду. Полученный при кипении пар вращает турбины, связанные с электрогенератором.

Ядерный реактор

Ядерным реактором называется устройство, осуществляющее управляемую реакцию деления ядра. Ядерный реактор состоит из многих элементов, таких как: ядерное горючее, замедлитель нейтронов, теплоноситель для вывода энергии и устройство для регулирования скорости реакции. Энергия, выделяемая из ядерного топлива, нагревает теплоноситель, который затем следует в парогенератор. Реактор окружают защитной оболочкой, задерживающей гамма-излучение.

Обычно в качестве горючего для ядерного реактора используются ядра изотопа урана, наиболее эффективно захватывающее медленные нейтроны. Захват медленных нейтронов происходит с гораздо большей вероятностью чем быстрых, поэтому в ядерных реакторах, которые работают на естественном уране, используются замедлители (вода, тяжёлая вода, бериллий, графит).

В качестве теплоносителей в ядерных реакторах на быстрых нейтронах используют жидкие металлы и газы, они дают возможность получить на выходе из реактора высокие температуры, позволяющие вырабатывать в парогенераторах пар высоких, сверхвысоких и закритических параметров. Теплоносители в реакторах на тепловых(медленных) нейтронах используют обычную и тяжелую воду, водяной пар, двуокись углерода.

Устройство для вывода энергии состоит из регулирующих и компенсирующих стержней. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.

Парогенератор

Парогенератором называется теплообменный аппарат, использующий теплоту первичного теплоносителя ядерного реактора, для производства водяного пара с давлением выше атмосферного. Теплоноситель из реактора, прокачивающийся насосами через парогенератор, отдает часть тепла, а затем снова возвращается в реактор. В парогенераторе это тепло передается воде второго контура, находящейся под гораздо меньшим давлением, вследствие чего вода закипает. Образовавшийся пар поступает на паровую турбину, которая вращает электрогенератор, а затем в конденсатор, где пар охлаждают. Пар конденсируется и снова поступает в парогенератор. В конденсаторе используется вода из внешнего открытого источника.

Турбина и электрогенератор

Подавляющее большинство паровых турбин, устанавливаемых на АЭС с водоохлаждаемыми реакторами предназначены для работы на насыщенном паре. Тепловая энергия пара при его расширении в проточной части турбины превращается в кинетическую энергию потока пара, которая используется для вращения ротора турбины электрогенератора.

Конденсатор

В конденсатор поступают перегретые пары теплоносителя, охлаждающиеся до температуры насыщения, они конденсируются и переходят в жидкую фазу. Для конденсации пара от каждой единицы его массы отводят теплоту равную удельной теплоте конденсации. В качестве охлаждающей жидкости на АЭС используется большое количество воды, поступающее из водохранилища.

Похожие слова

Строительство реакторов

История «мирного атома» в СССР и России

XX век навсегда останется в истории точкой отсчёта покорения «атома». Незадолго до его начала английские физики Джозеф Томсон и Эрнест Резерфорд использовали радиоактивные частицы при изучении процесса ионизации. Первая ядерная реакция была осуществлена Резерфордом во время бомбардировки атомов азота α-частицами в 1919 году.

Тремя годами позже в Петрограде под руководством академика Вернадского начал работу Радиевый институт. Учреждение объединило в себе все организации города, работающие в области радиологии. В плане практической деятельности институт осуществлял научное руководство радиевым рудником и заводом посёлка Бондюга в Татарстане.

На базе учебного заведения в 1933 году проводится Всесоюзная научная конференция, посвящённая проблемам ядерной физики. 1939 год ознаменовался открытием возможности урановой ядерной реакции, в разработке которой приняли участие выдающиеся советские учёные того времени. Через год Президиумом Академии Наук СССР утверждается программа научных исследований.

Вторая мировая война, осуществление управляемой ядерной реакции Э. Ферми в Чикаго, бомбардировка атомными бомбами японских городов Хиросима и Нагасаки и последующие события внесли жёсткие коррективы в работу учёных-ядерщиков. Во главе работ по урану ставят профессора И. В. Курчатова. Создаётся профильная лаборатория, затем институт, который существует и поныне. Чрезвычайная упорная работа приносит результаты:

  • 1944 год – первые килограммы чистого урана на территории Европы и Азии;
  • 1946 год – запущен первый в Евразии реактор;
  • 29 августа 1949 года на полигоне под Семипалатинском испытана первая в СССР атомная бомба;
  • 1953 год – водородная бомба;
  • 26 июня 1954 года первая в мире атомная электростанция (реактор «Атом мирный») в городе Обнинске, СССР, дала электрический ток.

Помимо чисто военных целей (бомбы, ракеты, подводные лодки), ядерная энергия начинает использоваться в народном хозяйстве и научных исследованиях. Кроме электростанции, в 60-ых годах прошлого века был запущен в работу исследовательский реактор на быстрых нейтронах, появился первый атомный ледокол – «Ленин».

Атомная энергетика России

Строительство атомных электростанций в нашей стране принимает широкие масштабы. 1958 год. Запущена первая очередь Сибирской АЭС (атомная электрическая станция), начато сооружение промышленной Белоярской атомной электростанции. В сентябре 1964 года вступает в строй первый энергоагрегат Нововоронежской АЭС. 1973 год – Ленинградская атомная станция.

Так продолжается вплоть до 1986 года, когда катастрофа планетарного масштаба на Чернобыльской электростанции вынудила пересмотреть доктрину ядерной энергетической безопасности. На территории СССР появилось 11 недостроенных атомных объектов. 

После распада Советского Союза в атомной отрасли произошёл целый ряд структурных изменений. Одно ведомство сменяло другое. В 1992 году путём преобразований было создано профильное министерство. Огромные экономические трудности привели к стагнации ядерной индустрии страны. Лишь благодаря высокой потребности в энергоресурсах и активной позиции специалистов атомные мощности и ресурсный человеческий потенциал в значительной степени удалось сохранить. В конце 1991 года в работе оставались 28 энергоблоков производительностью 20 242 МВт.

Для справки: общая мощность электростанций страны составляла на начало 1992 года 211 755 МВт. С 2000 года открывается новый этап атомной энергетики России.

Принцип работы АЭС

Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.

Существуют различные виды ядерных реакторов:

  1. PHWR (также имеет название «pressurised heavy water reactor» — «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой — D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
  2. ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
  3. GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов — графит, отсюда и название. КПД составляет около 40%.

По принципу устройства реакторы также делят на:

  • PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
  • BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
  • РБМК (канальный реактор, имеющий особенно большую мощность);
  • БН (система работает за счет быстрого обмена нейтронами).

Устройство и структура атомной электростанции. Как работает АЭС?

Устройство АЭС

Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:

  • реактора;
  • бассейна (именно в нем хранят ядерное топливо);
  • машины, перегружающие топливо;
  • БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).

Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.

Принцип работы АЭС

На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:

  • ядерная с переходом в тепловую;
  • тепловая, переходящая в механическую;
  • механическая, преобразовывающаяся в электрическую.

Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).

И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.

Аналитик раскрыл две тайны следующего iPhone

Ученые СССР, работавшие в атомной энергетике

Над тем, чтобы создать первый в СССР ядерный реактор и атомную бомбу, первую в мире атомную станцию и советскую атомную подводную лодку работали лучшие умы Советского Союза. Кто они, люди, которые подарили нам атомную энергетику?

Игорь Васильевич Курчатов – считается «отцом атомной бомбы» и создателем множества научных открытий в области изучения атомов радиоактивных веществ. В конце 1940х Курчатов лично убедил Сталина в необходимости использовать атом в мирных целях. После этой встречи были подписаны около 60ти документов по развитию атомных исследований.

Зинаида Васильевна Ершова – «Мадам Кюри Советского Союза». Под руководством Курчатова смогла получить карбид урана и металлический уран. Интересно то, что в военное время Ершова находилась в эвакуации в Казахстане, добровольно — принудительно ее доставили в Москву «для работы по специальности».

Николай Антонович Доллежаль – главный конструктор реактора первой в мире АЭС. Возглавлял НИИхиммаш, ученые которого были привлечены к атомному проекту. Кроме того, Доллежаль возглавлял разработку энергетических реакторов для корабельных установок. Принимал участие в проектировании первой в СССР атомной бомбы.

Борис Григорьевич Дубовский – занимался проблемами радиационного облучения и безопасности АЭС. Изготовил первый дозиметр – прибор, для измерения дозы ионизирующего излучения. Участвовал в конструировании и запуске множества советских ядерных реакторов.

Интересно, что запуск Обнинской АЭС Игорь Курчатов отложил на 6 дней из-за того, что Дубовский улетел в Харьков и не мог вовремя вернуться в Россию.

Экономическое значение

Доля атомной энергетики в общем производстве электроэнергии в различных странах.

В 2014 году ядерная энергия обеспечивала 2,6 % всей потребляемой человечеством энергии. Ядерный сектор энергетики наиболее значителен в промышленно развитых странах, где недостаточно природных энергоресурсов — во Франции, на Украине, в Бельгии, Финляндии, Швеции, Болгарии и Швейцарии. Эти страны производят от 20 до 76 % (во Франции) электроэнергии на АЭС.

В 2013 году мировое производство ядерной энергии выросло впервые с 2010 года — по сравнению с 2012 годом произошёл рост на 0,5 % — до 6,55 млрд МВт ч (562,9 млн тонн нефтяного эквивалента). Наибольшее потребление энергии атомных станций в 2013 году составило в США — 187,9 млн тонн нефтяного эквивалента. В России потребление составило 39,1 млн тонн нефтяного эквивалента, в Китае — 25 млн тонн нефтяного эквивалента, в Индии — 7,5 млн тонн.

Согласно отчёту Международного агентства по атомной энергии (МАГАТЭ), на конец 2016 года насчитывалось 450 действующих ядерных энергетических (то есть производящих утилизируемую электрическую и/или тепловую энергию) реакторов в 31 стране мира (кроме энергетических, существуют также исследовательские и некоторые другие).

Примерно половина мирового производства электроэнергии на АЭС приходится на две страны — США и Францию. США на АЭС производят только 1/8 своей электроэнергии, однако это составляет около 20 % мирового производства.

Абсолютным лидером по использованию ядерной энергии являлась . Единственная Игналинская АЭС, расположенная на её территории, вырабатывала электрической энергии больше, чем потребляла вся республика (например, в 2003 году в Литве всего было выработано 19,2 млрд кВт⋅ч, из них — 15,5 Игналинской АЭС). Обладая её избытком (а в Литве есть и другие электростанции), «лишнюю» энергию отправляли на экспорт.
Однако, под давлением ЕС (из-за сомнений в её безопасности — ИАЭС использовала энергоблоки того же типа, что и Чернобыльская АЭС), с 1 января 2010 года эта АЭС была окончательно закрыта (предпринимались попытки добиться продолжения эксплуатации станции и после 2009 года, но они не увенчались успехом[источник не указан 682 дня]), сейчас[когда?] решается вопрос о строительстве на той же площадке АЭС современного типа.

Объёмы производства ядерной электроэнергии по странам

Страны с атомными электростанциями.  Эксплуатируются АЭС, строятся новые энергоблоки.  Эксплуатируются АЭС, планируется строительство новых энергоблоков.  Нет АЭС, станции строятся.  Нет АЭС, планируется строительство новых энергоблоков.  Эксплуатируются АЭС, строительство новых энергоблоков пока не планируется.  Эксплуатируются АЭС, рассматривается сокращение их количества.  Гражданская ядерная энергетика запрещена законом.  Нет АЭС..

Основная статья: Атомная энергетика по странам

За 2016 год суммарно АЭС мира выработали 2477 млрд кВт⋅ч энергии, что составило 10,8 % всемирной генерации электричества.

Мировыми лидерами в производстве ядерной электроэнергии на 2017 год являются:

  • США (804 млрд кВт·ч/год), работает 99 атомных реакторов (20 % от вырабатываемой электроэнергии)
  • Франция (379 млрд кВт·ч/год), 58 реакторов, 71,6%.
  • Китай (210 млрд кВт·ч/год), 39 реакторов, 3,6%.
  • Россия (202,868 млрд кВт.ч /год), 35 реакторов, 18,9%.
  • Южная Корея (141 млрд кВт·ч/год), 24 реактора, 27,1%.
  • Канада (96 млрд кВт·ч/год), 19 реакторов, 14,6%.
  • Украина (85 млрд кВт·ч/год), 15 реакторов, 55,1%.
  • Германия (72 млрд кВт·ч/год), 9 реакторов, 11,6%.
  • Швеция (63 млрд кВт·ч/год), 8 реакторов, 39,6%.
  • Великобритания (65 млрд кВт·ч/год), 15 реакторов, 19,3%.

Примерно половина всемирной выработки электроэнергии на АЭС приходится на США и Францию.

Нововведения в законе

Нововведения коснулись статьи 13 этого норматива. Чтобы получить военную пенсию гражданину необходимо:

  • Уволиться со службы после достижения 45-летнего возраста.
  • Рабочий стаж в армии и перечисленных отраслях должен быть не менее 25 лет.
  • В случае достижения предельного для службы возраста пенсия может быть назначена при наличии 12,5 летнего профильного стажа в календарных годах.

Труженикам военной отрасли повысят пенсионные пособия. Состоится это с момента вступления закона в силу, то есть с 01.10.2020 г.

Несмотря на существующее решение Правительства о заморозке индекса денежного довольствия до 01.01.2020 г. процесс пересчета зарплаты в пенсионную помощь было инициировано Президентом РФ.

Повышение на 6,3% было учтено при формировании Федерального бюджета на 2021 год.

Вопрос индексации военпенсий рассматривался на протяжении нескольких лет. Увеличение обеспечения выполнялось ежегодно на 2% .

Мнение эксперта
Кузьмин Дмитрий Северинович
Консультант в области права с 10-летним стажем. Специализация — гражданское право. Имеет опыт в разработке юридической документации.

Прирост понижательного индекса давал возможность реализации этого механизма. Планировалось, что происходило это будет до того момента пока расчетная выплата не приравняется к 100% оклада.

Однако этот процесс был приостановлен.

В 2018 году выплаты военным проиндексировали на 4% с расчётом на то, что повышение военпенсий октября 2021 состоится за счет изменения индекса денежного довольствия и корректировки инфляционного фактора.

Последние новости в вопросе увеличения пенсионного возраста военнослужащим

Вопрос об увеличении пенсионного возраста с каждым годом становиться все более актуальным.

Конечно, многих граждан нашей станы интересует один и тот же вопрос – так будет увеличении пенсионного возраста или нет?

В частности это вопрос остро стоит перед военнослужащими. По этой причине рассмотрим вопрос об увеличении пенсионного возраста именно для этой категории граждан.

Атомная энергетика после аварии на Чернобыльской АЭС

1986 год стал роковым для этой отрасли. Последствия техногенной катастрофы оказались настолько неожиданными для человечества, что естественным побуждением стало закрытие многих атомных станций. Количество АЭС во всем мире сократилось. Были остановлены строящиеся по проектам СССР не только отечественные станции, но и зарубежные.

  • Горьковская АСТ (теплоцентраль);
  • Крымская;
  • Воронежская АСТ.

Список АЭС России, отмененных на этапе проектирования и подготовительных земляных работ:

  • Архангельская;
  • Волгоградская;
  • Дальневосточная;
  • Ивановская АСТ (теплоцентраль);
  • Карельская АЭС и Карельская-2 АЭС;
  • Краснодарская.

Урановое топливо

Уран – серебристо-белый глянцевый металл высокой плотности. В природе встречаются три изотопа: U-238 (содержание = 99,2745%), U-235 (0,72%), U-234 (0,055). Топливом на АЭС служит U-235 как материал, способный самостоятельно поддерживать цепную ядерную реакцию. Но его природное содержание в исходном сырье мало, поэтому приходится заниматься искусственным обогащением (повышением содержания 235-го изотопа в топливе).

Россия обладает 9% общемировых разведанных запасов ядерного топлива (немногим более полумиллиона тонн). Добычей такого незаменимого сырья для атомной промышленности в нашей стране занимается Урановый холдинг «АРМЗ (Атомредметзолото)». 90% урана в России приносит Краснокаменское горно-химическое объединение.

Зарубежные активы представлены компанией Uranium One, подразделением нашей отечественной госкорпорации, владеющей производственными мощностями в США, Канаде, ЮАР, Казахстане, Австралии. Есть договорённость участия в разработке месторождения Мардай на территории Монголии.  

Наша страна обладает полностью завершённым циклом мощностей обогащения урана, достаточным для того, чтобы обеспечить своей продукцией каждый шестой реактор в мире. В основе самой передовой современной технологии лежит газоцентрифужный метод. Объединяет все обогатительные предприятия и организации Топливная компания «ТВЭЛ» – абсолютный монополист производства ядерного топлива в России.

Указ Президента РФ от 14 ноября 2017 г. № 549 “О порядке принесения Присяги гражданина Российской Федерации”

16 ноября 2017

В соответствии с частью четвертой статьи 11.1 Федерального закона от 31 мая 2002 г. № 62-ФЗ «О гражданстве Российской Федерации» постановляю:

1. Утвердить прилагаемые:

а) о порядке принесения Присяги гражданина Российской Федерации;

б) с текстом Присяги гражданина Российской Федерации.

2. Правительству Российской Федерации:

а) осуществить мероприятия, направленные на реализацию настоящего Указа;

б) привести свои акты в соответствие с настоящим Указом.

3. Финансирование расходов, связанных с реализацией настоящего Указа, осуществлять за счет и в пределах бюджетных ассигнований, предусмотренных в федеральном бюджете Министерству внутренних дел Российской Федерации и Министерству иностранных дел Российской Федерации на руководство и управление в сфере установленных функций.

4. Настоящий Указ вступает в силу со дня его официального опубликования.

Президент Российской Федерации В. Путин

Москва, Кремль

14 ноября 2017 года

№ 549

УТВЕРЖДЕНО ПрезидентаРоссийской Федерацииот 14 ноября 2017 г. № 549

Положениео порядке принесения Присяги гражданина Российской Федерации

1. Лицо, в отношении которого полномочным органом, ведающим делами о гражданстве Российской Федерации, принято решение о приеме в гражданство Российской Федерации на основании пунктов «б» — «г» статьи 11 Федерального закона от 31 мая 2002 г. № 62-ФЗ «О гражданстве Российской Федерации», приносит Присягу гражданина Российской Федерации (далее — Присяга) перед Государственным флагом Российской Федерации.

2. Принесение Присяги организуется территориальным органом Министерства внутренних дел Российской Федерации либо дипломатическим представительством или консульским учреждением Российской Федерации, в котором в установленном порядке было принято заявление лица о приеме в гражданство Российской Федерации.

Порядок организации принесения Присяги, в том числе использования, учета и хранения с текстом Присяги (далее — бланк), определяется Министерством внутренних дел Российской Федерации и Министерством иностранных дел Российской Федерации в соответствии с порядком исполнения решений по вопросам гражданства Российской Федерации, установленным законодательством Российской Федерации.

3. Принесение Присяги может осуществляться в помещениях территориальных органов Министерства внутренних дел Российской Федерации, дипломатических представительств или консульских учреждений Российской Федерации, иных государственных органов, органов местного самоуправления, а также в исторических местах, местах боевой и трудовой славы, у братских могил воинов, павших в боях за свободу и независимость Российского государства.

4. Лицо, приносящее Присягу, зачитывает вслух текст Присяги, после чего собственноручно проставляет в соответствующей графе свои фамилию, имя и отчество, дату принесения Присяги и подпись.

Должностное лицо территориального органа Министерства внутренних дел Российской Федерации либо дипломатического представительства или консульского учреждения Российской Федерации, в котором в установленном порядке было принято заявление лица о приеме в гражданство Российской Федерации, подтверждает факт принесения Присяги: проставляет дату принесения Присяги, регистрационный номер , гербовую печать и свою подпись.

5. Заполненный и заверенный приобщается к материалам, касающимся приема лица, принесшего Присягу, в гражданство Российской Федерации.

УТВЕРЖДЕН ПрезидентаРоссийской Федерацииот 14 ноября 2017 г. № 549

                                ОБРАЗЕЦ

        бланка с текстом Присяги гражданина Российской Федерации

                                ПРИСЯГА

                    гражданина Российской Федерации

     Я, ________________________________________________________________,

добровольно  и  осознанно  принимая  гражданство  Российской   Федерации,

клянусь:

     соблюдать Конституцию и законодательство Российской Федерации, права

и свободы ее граждан;

     исполнять  обязанности  гражданина  Российской  Федерации  на  благо

государства и общества;

     защищать свободу и независимость Российской Федерации;

     быть верным России, уважать ее культуру, историю и традиции.

 ___________________________        ____________________________________

  (дата принесения Присяги)          (подпись лица, принесшего Присягу)

     Присяга  гражданина  Российской   Федерации  принесена  (зачитана  и

подписана) ______________________________________________________________

                (фамилия, имя и отчество лица, принесшего Присягу)

в моем присутствии

_________________________________________________________________________

 (должность, фамилия, инициалы должностного лица территориального органа

_________________________________________________________________________

 Министерства внутренних дел Российской Федерации либо дипломатического

_________________________________________________________________________

   представительства или консульского учреждения Российской Федерации)

  ________________                            ___________________________

       (дата)                                 (подпись должностного лица)

                                              М.П.

                                                      № _________________

Видео обзор

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector