Почему атомная энергетика?

Содержание:

Примечания

Принцип работы АЭС

Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.

Существуют различные виды ядерных реакторов:

  1. PHWR (также имеет название «pressurised heavy water reactor» — «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой — D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
  2. ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
  3. GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов — графит, отсюда и название. КПД составляет около 40%.

По принципу устройства реакторы также делят на:

  • PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
  • BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
  • РБМК (канальный реактор, имеющий особенно большую мощность);
  • БН (система работает за счет быстрого обмена нейтронами).

Устройство и структура атомной электростанции. Как работает АЭС?

Устройство АЭС

Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:

  • реактора;
  • бассейна (именно в нем хранят ядерное топливо);
  • машины, перегружающие топливо;
  • БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).

Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.

Принцип работы АЭС

На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:

  • ядерная с переходом в тепловую;
  • тепловая, переходящая в механическую;
  • механическая, преобразовывающаяся в электрическую.

Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).

И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.

[править] Развитие атомной энергетики

Двадцатый век стал временем освоения ядерной физики.

Двадцатый век стал временем освоения ядерной физики. В 1939 году ученые мира уже использовали практические и теоритические открытия в области атомной физики, что позволяло им выдвинуть программу исследований в этом направлении. В ходе многочисленных исследований ученые выявили, что можно разложить атом урана на две части, что позволяет освободить большое количество энергии и в процессе разложения выделяются нейтроны, расщепляющие другие атомы урана и вызывающие цепную ядерную реакцию. Ядерная реакция разделения урана эффективна и превосходит самые сильные химические реакции. Эти открытия произвели в научном мире настоящий фурор, ведь теперь можно было проникать в атом и овладевать его энергией.

Первое получение атомной энергии

Впервые ядерную энергию выработали в 1951 году в штате Айдахо, США. Там ученые построили ядерный реактор мощностью 100 киловатт. В 1954 году в СССР была построена первая атомная электростанция в городе Обнинске мощностью 5 МВт. Источником электроэнергии служило расщепление ядер урана. После этих событий атомная энергетика начала активно развиваться и в других странах. В 1956 году в Великобритании заработала АЭС «Калдер Холл-1» мощностью в 50 МВт. В 1957 году запустили АЭС Шиппингпорт в США мощностью 60 МВт. В 1959 году близ Авиньона во Франции открылась станция Маркуль мощностью в 37 Мвт. В СССР в 1964 году были запущены первые блоки Белоярской и Нововоронежской АЭС мощностью в 100 и 240 МВт соответственно. Итак, К 1964 г. суммарная мощность АЭС в мире выросла до 5 млн кВт. В мае 1970 года началось строительство Чернобыльской АЭС. В 1973 году, был запущен первый высокомощный блок Ленинградской АЭС мощностью в 1000 МВт. Годом ранее свою работу начала атомная электростанция в городе Шевченко (ныне Актау). Уже к 1986 г. в мире работали на АЭС 365 энергоблоков суммарной установленной мощностью 253 млн.кВт. Практически за 20 лет мощность АЭС увеличилась в 50 раз. Причинами такой высокой активности внедрения атомной энергетики в жизнь человечества стали: низкая стоимость возведения АЭС, рост потребления электроэнергии и стоимости энергоносителей, торговое эмбарго на поставки энергоносителей из арабских стран и др. Однако, 80-х годах спрос на электроэнергию стабилизировался, также как и стоимость природного топлива, а стоимость постройки АЭС, наоборот, увеличилась. К тому же серьезный удар развитию атомной энергетики был нанесен тяжелой аварией на АЭС «Три Майл Айленд» в США в 1979 г., и страшная авария на Чернобыльской АЭС в 1986 году, которые заставили людей задуматься о безопасности атомных электростанций. Во многих странах были приостановлены программы развития атомной энергетики, а в ряде стран вообще отказались от намеченных ранее планов по её развитию. Несмотря на это, к 2000 г. на АЭС, работающих в 37 странах мира, вырабатывалось 16 % мирового производства электроэнергии. Всевозможные усилия, предпринятые по улучшению безопасности АЭС, привели к тому, что доверие общества к атомной энергетике восстановилось. В условиях экологического кризиса, с которым мировое сообщество вошло в ХХI век, атомная энергетика может внести значительный вклад в обеспечение надежного электроснабжения, снижение выбросов в окружающую среду парниковых газов и загрязняющих веществ. В настоящее время активно развивают атомную энергетику страны с высокой её долей в общем объёме вырабатываемой электроэнергии, включая США, Японию, Южную Корею, Финляндию. Франция, переориентировав электроэнергетику страны на атомную и продолжая её развивать, с успехом решила энергетическую проблему на многие десятилетия. Доля АЭС в производстве электроэнергии в этой стране достигает 80 %. Развивающиеся страны с незначительной ещё долей ядерной генерации электроэнергии высокими темпами строят АЭС.

Основные проблемы ядерной энергетики

С развитием ядерной энергетики связана одна существенная экологическая проблема. Это так называемое тепловое загрязнение окружающей среды. Так, по мнению многих экспертов, АЭС выделяют больше тепла, нежели такие же по мощности тепловые электростанции. Особо опасно тепловое загрязнение вод, которое нарушает природные условия жизни биологических организмов и приводит к гибели многих видов рыб.

Другая острая проблема, связанная с атомной энергетикой, касается ядерной безопасности в целом. Впервые человечество всерьез задумалось об этой проблеме после Чернобыльской катастрофы 1986 года. Принцип работы Чернобыльской АЭС мало чем отличался от такового других атомных электростанций. Однако это не спасло её от крупной и серьезной аварии, повлекшей за собой очень серьезные последствия для всей Восточной Европы.

Причем опасность ядерной энергетики не ограничивается лишь возможными техногенными авариями. Так, большие проблемы возникают с утилизацией ядерных отходов.

Без мирного атома никак

Мировая экономика немыслима без атомной энергетики. На атомных электростанциях вырабатывается одна десятая всей производимой на планете электроэнергии. Сегодня 192 атомные электростанции работают в 31 стране мира. Как правило, все они имеют по несколько энергоблоков – технологических комплексов оборудования для производства электроэнергии, имеющих в своем составе ядерный реактор. Общее количество таких энергоблоков в мире составляет 451.

На первом месте по количеству АЭС находятся США – 62, на втором Франция – 19, третье место у Японии – 17. Россия занимает пятое место по количеству атомных электростанций. Их у нас 10 с 37 энергоблоками. Общая мощность всех АЭС мира составляет около 392 ГВт.

Атомная энергетика имеет много плюсов. Ключевые – высокая рентабельность и отсутствие выбросов в атмосферу продуктов сгорания, как это происходит на тепловых электростанциях. Однако есть и серьезные минусы. В случае аварии на атомной электростанции продукты деления ядерного топлива, вырвавшиеся из реактора, могут надолго сделать непригодными для жизни большие территории, прилегающие к станции. Еще один минус – это проблема хранения и переработки отработанного ядерного топлива.

Ссылки

История «мирного атома» в СССР и России

XX век навсегда останется в истории точкой отсчёта покорения «атома». Незадолго до его начала английские физики Джозеф Томсон и Эрнест Резерфорд использовали радиоактивные частицы при изучении процесса ионизации. Первая ядерная реакция была осуществлена Резерфордом во время бомбардировки атомов азота α-частицами в 1919 году.

Тремя годами позже в Петрограде под руководством академика Вернадского начал работу Радиевый институт. Учреждение объединило в себе все организации города, работающие в области радиологии. В плане практической деятельности институт осуществлял научное руководство радиевым рудником и заводом посёлка Бондюга в Татарстане.

На базе учебного заведения в 1933 году проводится Всесоюзная научная конференция, посвящённая проблемам ядерной физики. 1939 год ознаменовался открытием возможности урановой ядерной реакции, в разработке которой приняли участие выдающиеся советские учёные того времени. Через год Президиумом Академии Наук СССР утверждается программа научных исследований.

Вторая мировая война, осуществление управляемой ядерной реакции Э. Ферми в Чикаго, бомбардировка атомными бомбами японских городов Хиросима и Нагасаки и последующие события внесли жёсткие коррективы в работу учёных-ядерщиков. Во главе работ по урану ставят профессора И. В. Курчатова. Создаётся профильная лаборатория, затем институт, который существует и поныне. Чрезвычайная упорная работа приносит результаты:

  • 1944 год – первые килограммы чистого урана на территории Европы и Азии;
  • 1946 год – запущен первый в Евразии реактор;
  • 29 августа 1949 года на полигоне под Семипалатинском испытана первая в СССР атомная бомба;
  • 1953 год – водородная бомба;
  • 26 июня 1954 года первая в мире атомная электростанция (реактор «Атом мирный») в городе Обнинске, СССР, дала электрический ток.

Помимо чисто военных целей (бомбы, ракеты, подводные лодки), ядерная энергия начинает использоваться в народном хозяйстве и научных исследованиях. Кроме электростанции, в 60-ых годах прошлого века был запущен в работу исследовательский реактор на быстрых нейтронах, появился первый атомный ледокол – «Ленин».

Атомная энергетика России

Строительство атомных электростанций в нашей стране принимает широкие масштабы. 1958 год. Запущена первая очередь Сибирской АЭС (атомная электрическая станция), начато сооружение промышленной Белоярской атомной электростанции. В сентябре 1964 года вступает в строй первый энергоагрегат Нововоронежской АЭС. 1973 год – Ленинградская атомная станция.

Так продолжается вплоть до 1986 года, когда катастрофа планетарного масштаба на Чернобыльской электростанции вынудила пересмотреть доктрину ядерной энергетической безопасности. На территории СССР появилось 11 недостроенных атомных объектов. 

После распада Советского Союза в атомной отрасли произошёл целый ряд структурных изменений. Одно ведомство сменяло другое. В 1992 году путём преобразований было создано профильное министерство. Огромные экономические трудности привели к стагнации ядерной индустрии страны. Лишь благодаря высокой потребности в энергоресурсах и активной позиции специалистов атомные мощности и ресурсный человеческий потенциал в значительной степени удалось сохранить. В конце 1991 года в работе оставались 28 энергоблоков производительностью 20 242 МВт.

Для справки: общая мощность электростанций страны составляла на начало 1992 года 211 755 МВт. С 2000 года открывается новый этап атомной энергетики России.

Опасны ли атомные станции

В итоге мы получаем ситуацию, при которой атомная энергетика напоминает ситуацию с самолетами. Их многие боятся, но в реальности риск просто умереть на улице в сотни раз выше, чем разбиться на самолете. Просто аварии вызывают большой резонанс и разово погибает больше людей, но такие аварии случаются редко.

Кроме систем самой атомной станции, о которых мы поговорим ниже, они сопровождаются серьезными мерами предосторожности. Признаюсь честно, когда я находился рядом с Воронежской АЭС мне было немного не по себе, но когда я собрал побольше информации, я понял, что переоценивал ситуацию

Вокруг любой атомной станции есть как минимум 30-километровая зона, в которой постоянно производится мониторинг ситуации и экологической обстановки. Это не зона отчуждения, так как в ней можно жить людям и даже заниматься земледелием. Ограничения касаются только трехкилометровой зоны в непосредственной близости от станции. Но это опять же сделано только с целью обеспечения дополнительной безопасности, а не из-за того, что там опасно находиться.

Так выглядит зона безопасности вокруг Балаковской АЭС.

Наверное, самым опасным периодом работы станции является момент загрузки топлива. Именно в этот момент реактор открывается и есть небольшой риск попадания радиоактивных отходов в воздух. Правда, делается это не часто (в среднем один раз в год) и выброс будет очень незначительным.

Подотрасли

Запорожская АЭС, Украина.

Ядерная электроэнергетика

Основная статья: Атомная электростанция

См. также: Список АЭС мира

А́томная электроста́нция (АЭС) — ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом), предназначенная для производства электрической энергии (ОПБ-88/97).

Ядерная транспортная энергетика

Российский атомный ледокол «Ямал» в 1994 году

Основная статья: Атомоход

Атомоход (атомное судно) — общее название судов с ядерной энергетической установкой, обеспечивающей ход судна.
Различают атомоходы гражданские (атомные ледоколы, транспортные суда) и военные (авианосцы, подводные лодки, крейсеры, тяжёлые фрегаты).

Важные события и даты

Практически все время работы после запуска реактор использовался как исследовательский благодаря наличию петлевых установок и экспериментальных устройств. Обнинская АЭС принимала самое активное участие в следующих проектах:

  • Испытания твэлов для ледокола «Ленин»
  • Полный цикл испытания для 1-го и 2-го блоков Белоярской АЭС, строительство которой началось в 1958 году
  • При помощи экспериментов на Обнинской АЭС создана первая транспортабельная атомная энергетическая установка ТЭС-3
  • Важнейшая экспериментальная база для Ядерных энергетических установок для подводных лодок.
  • Разработка реакторов ФЭИ – БР-5, БР-10 и БОР-60
  • Активное участие в разработке реакторов на быстрых нейронах БН-350, БН-600 и БН-800
  • Производились испытания для космических атомных установок «Топаз» и «Бук», и в 1970 именно на основе этих исследования создали первый в мире реактор-преобразователь «Топаз»
  • Исследовательский реактор БОР-60  и исследовательский реакторы на быстрых нейронах БР
  • Производились эксперименты для Билибинской АЭС, работающей в условиях крайнего севера.
  • Создание нейтронного спектрометра
  • Так же на станции осуществлено более десятка важных открытий и измерений в ядерной отрасли.

История

На конец 1991 года в Российской Федерации функционировало 28 энергоблоков общей номинальной мощностью 20 242 МВт, без учёта Обнинской и Сибирской АЭС, а также без ректоров ВК-50 и БОР-60 в НИИАР г. Димитровград.

С 1991 года по 2015 год к сети было подключено 7 новых энергоблоков общей номинальной мощностью 6 964 МВт: 4-й блок на Балаковской АЭС (1993), 3-й и 4-й блоки на Калининской АЭС (2004 и 2011), 1-, 2- и 3-й блоки на Ростовской АЭС (2001, 2010 и 2014), 4-й блок Белоярской АЭС (2015).

В 2002 году была выведена из эксплуатации первая в мире АЭС — Обнинская. Был заглушен её единственный реактор мощностью 6 МВт.

В 2008 году была закрыта Сибирская АЭС.

На конец 2015 года в стадии строительства находятся 6 энергоблоков, не считая двух блоков Плавучей атомной электростанции малой мощности.

В 2007 году федеральные власти инициировали создание единого государственного холдинга «Атомэнергопром» объединяющего компании Росэнергоатом, ТВЭЛ, Техснабэкспорт и Атомстройэкспорт. 100 % акций ОАО «Атомэнергопром» передавалось одновременно созданной Государственной корпорации по атомной энергии «Росатом».

На начало 2010 года за Россией было 16 % на рынке услуг по строительству и эксплуатации АЭС в мире. Согласно исследованию РБК от июля 2010 года, на сегодня «Атомстройэкспорт», основным акционером которого является государственная корпорация Росатом, сохраняет за собой 20 % мирового рынка строительства АЭС. Эта доля может увеличиться до 25 %. По данным на март 2010 года, Росатом строит 10 атомных энергоблоков в России и 5 за рубежом.

В России построено 10 АЭС, на которых эксплуатируется 31 энергоблок. С 1991 года в строй было введено 3 новых блока. На начало 2006 года в стадии строительства находились ещё три. В 2007 году российские АЭС выработали 160 млрд кВт•ч электроэнергии, что составило 15,7 % от общей выработки в стране. Свыше 4 % электроэнергии, производимой в европейской части России и на Урале, приходится на АЭС. В 2009 г. прирост производства урана составил 25 % в сравнении с 2008 г. После запуска энергоблока Волгодонской АЭС в 2010 году, Путин озвучил планы доведения атомной генерации в общем энергобалансе России с 16 % до 20-30 %.

Сейчас Росатому принадлежит 40 % мирового рынка услуг по обогащению урана и 17 % рынка по поставке ядерного топлива для АЭС. Россия имеет крупные комплексные контракты в области атомной энергетики с Индией, Бангладеш,Арменией, Венесуэлой, Китаем, Вьетнамом, Ираном, Турцией, Болгарией, Белоруссией и с рядом стран Центральной Европы. Вероятны комплексные контракты в проектировании, строительстве атомных энергоблоков, а также в поставках топлива с Аргентиной, Нигерией, Казахстаном, Украиной, Катаром. Ведутся переговоры о совместных проектах по разработке урановых месторождений с Монголией

В России существует большая национальная программа по развитию ядерной энергетики, включающей строительство 28 ядерных реакторов в ближайшие годы, в дополнение к 30, уже построенным в советский период. Так, ввод первого и второго энергоблоков Нововоронежской АЭС-2 должен состояться в 2013—2015гг.

Федеральным агентством по атомной энергии России ведётся не имеющий аналогов в мире проект по созданию уникальных плавучих атомных электростанций малой мощности. В 2010 году замглавы концерна «Росэнергоатом» заявил, что работы по строительству первого экземпляра идут по графику. Готовность станции — конец 2012 года, выход на эксплуатацию — в 2013 году.

1701 г.

Ссылки

Управление реактором

Вернемся снова к ядерному реактору. Как же он управляется? Помимо твэлов с топливом и замедлителя в нем находятся еще управляющие стержни. Они предназначены для пуска и остановки реактора, поддержания его критического состояния в любой момент его работы и для перехода с одного уровня мощности на другой. Стержни изготовлены из материала, хорошо поглощающего нейтроны.

Для того чтобы реактор работал на постоянном уровне мощности, необходимо создать и поддерживать в его активной зоне такие условия, чтобы плотность нейтронов была неизменной во времени. Это состояние реактора и принято называть «критическим состоянием», или просто «критичностью».

Когда активная зона сильно разогревается, в нее опускаются управляющие стержни, которые встают между твэлами и вбирают в себя избыточные нейтроны. Если нужно добавить мощности, управляющие стержни снова поднимают. Если же их опустить на всю длину твэлов, то цепная реакция прекратится, реактор будет заглушен.

Кроме того, на случай непредвиденного катастрофического развития цепной реакции, а также возникновения других аварийных режимов, связанных с избыточным энерговыделением в активной зоне реактора, в каждом реакторе предусмотрена возможность экстренного прекращения цепной реакции. В этом случае в центральную часть активной зоны под действием силы тяжести сбрасываются стержни аварийной защиты.

Как происходит переработка топлива АЭС

Спустя год использования урана в ядерных реакторах необходимо производить его замену.

Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение.

В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них делают свежее ядерное топливо.

Продукты распада урана и плутония направляются на изготовление источников ионизирующих излучений, их используют в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в печь для разогрева, из этой массы варится стекло, такое стекло находится в специальных хранилищах.

Из остатков изготавливают стекло не для массового применения, стекло используется для хранения радиоактивных веществ.

Из стекла сложно выделить остатки радиоактивных элементов, которые могут навредить окружающей среде. Недавно появился новый способ утилизации радиоактивных отходов.

Быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива.

По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Помимо этого, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного.

Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого не применялись.

См. также

История создания атомного реактора

Первый ядерный реактор был запущен в не таком уж и далеком 1942 году. Произошло это в США под руководством Ферми. Этот реактор назвали «Чикагской поленницей».

В 1946 году заработал первый советский реактор, запущенный под руководством Курчатова. Корпус этого реактора представлял собой шар семи метров в диаметре. Первые реакторы не имели системы охлаждения, и мощность их была минимальной. К слову, советский реактор имел среднюю мощность 20 Ватт, а американский – всего 1 Ватт. Для сравнения: средняя мощность современных энергетических реакторов составляет 5 Гигаватт. Менее чем через десять лет после запуска первого реактора была открыта первая в мире промышленная атомная электростанция в городе Обнинске.

Первый в мире ядерный реактор

В геральдике

Страницы

Принцип работы ядерного (атомного) реактора

У любого ядерного реактора есть несколько частей: активная зона с топливом и замедлителем, отражатель нейтронов, теплоноситель, система управления и защиты. В качестве топлива в реакторах чаще всего используются изотопы урана (235, 238, 233), плутония (239) и тория (232).  Активная зона представляет собой котел, через который протекает обычная вода (теплоноситель). Среди других теплоносителей реже используется «тяжелая вода» и жидкий графит. Если говорить про работу АЭС, то ядерный реактор используется для получения тепла. Само электричество вырабатывается тем же методом, что и на других типах электростанций — пар вращает турбину, а энергия движения преобразуется в электрическую энергию.

Приведем ниже схему работы ядерного реактора.

Схема ядерного реактора на АЭС

Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.

Здесь нужно упомянуть коэффициент размножения нейтронов. Так, если этот коэффициент превышает значение, равное единице, происходит ядерный взрыв. Если значение меньше единицы, нейтронов слишком мало и реакция угасает. А вот если поддерживать значение коэффициента равным единице, реакция будет протекать долго и стабильно.

Цепная реакция

Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо. ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни. Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты. Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.

ТВЭЛы, помещенные в топливную кассету

Можно ли при подагре есть орехи? В чем польза и вред, какие употреблять и как кушать?

АЭС: принцип работы (фото и описание)

В основе работы любой атомной электростанции лежит мощная реакция, которая возникает при делении ядра атома. В этом процессе чаще всего участвуют атомы урана-235 или же плутония. Ядро атомов делит нейтрон, попадающий в них извне. При этом возникают новые нейтроны, а также осколки деления, которые имеют огромную кинетическую энергию. Как раз эта энергия и выступает главным и ключевым продуктом деятельности любой атомной станции

Так можно описать принцип работы реактора АЭС. На следующем фото вы можете посмотреть, как он выглядит изнутри.

Выделяют три основных типа ядерных реакторов:

  • канальный реактор высокой мощности (сокращенно — РБМК);
  • водно-водяной реактор (ВВЭР);
  • реактор на быстрых нейтронах (БН).

Отдельно стоит описать принцип работы АЭС в целом. О том, как она работает, речь пойдет в следующей статье.

Атомные электростанции с трехконтурным реактором:

Трехконтурная схема используется на атомных электростанциях с реакторами типа БН («быстрый натриевый»). Работа таких реакторов основана на быстрых нейтронах, в качестве теплоносителя используется радиоактивный жидкий натрий. Для исключения его контакта с водой в конструкции реактора предусмотрен дополнительный контур, в котором используется натрий без радиоактивных свойств; это обеспечивает трехконтурный тип схемы.

Современный 3-контурный реактор БН-800, разработанный в 80-х – 90-х годах прошлого столетия, обеспечил России передовые позиции в области производства быстрых реакторов. Его ключевой особенностью является защищенность от воздействий, проистекающих изнутри или извне. В этой модели сведен к минимуму риск возникновения аварии, при которой расплавляется активная зона и в ходе переработки облученного ядерного топлива выделяется плутоний.

В рассматриваемом реакторе могут применяться различные виды топлива — обычные с окисью урана или МОКС-топливо на основе урана и плутония. Использование последнего приносит ряд преимуществ: во-первых, в этом случае могут быть использованы запасы энергетического плутония, во-вторых, появляется возможность утилизации оружейного плутония и сжигания изотопов актиноидов, содержащихся в облученном топливе тепловых реакторов и являющихся долгоживущими.

Показатель электрической мощности модели — 880 мегаватт, тепловой мощности — 2100 мегаватт.

«Теперь наркота попрёт масштабно» — США выводят войска из Афганистана

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector