Орбитальные скорости планет солнечной системы: характеристики и траектории

Вариант второй

Квадранты

В звёздной картографии под квадрантом подразумевается обширное пространство космоса в рамках галактики. Границы квадрантов определяются осями, проходящими через центр галактики и пересекающимися перпендикулярно друг относительно друга. Таким образом, галактика Млечный путь состоит из четырёх приблизительно равных квадрантов, которые называются Альфа, Бета, Гамма и Дельта-квадрантами. Звёздный Флот Федерации и его ближайшие соседи Клингонская и Ромуланская империи располагаются в Альфа и Бета-квадрантах. Коллектив боргов находится в Дельта-квадранте. Доминион — в Гамма-квадранте.

Альфа-квадрант

Альфа-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Его границы определены меридианом, проходящим через галактическое ядро вблизи Солнечной системы и вторым меридианом, перпендикулярным первому. В квадрант входят Рукав Ориона, Рукав Персея и Рукав Стрельца.

Межзвёздная политика в Альфа-квадранте в XXIV веке в основном определялась Звёздном Флоте Федерации совместно с другими силами региона, включавшими Клингонскую и Ромуланскую империи, Кардассианский союз, Тзенкети, Таларианскую республику и Альянс ференгов, которые взаимодействовали между собой в основном мирно. Члены Толианского сообщества , Конфедерации бринов и Зинди держались достаточно обособленно от остальных обитателей Альфа-квадранта.

Стоит отметить, что к этому времени достаточно изучено только 25 процентов Альфа-квадранта, но и они содержат примеры потрясающей красоты и научного чуда, как, например, Звёздное скопление Арголис, Туманность Арахнид и Пустоши.

Одним из самых интересных астрономических объектов является Баджорская червоточина, соединяющая Баджорский сектор в Альфа-квадранте с системой Идран, расположенной в отдалённой части Гамма-квадранта, неподалёку от пространства Доминиона. Использование этой червоточины обитателями Альфа-квадранта для исследований и торговли вызвало усиление враждебности со стороны Доминиона, что вылилось в Доминионскую войну.

Бета-квадрант

Бета-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Один из квадрантов нашей Галактики, расположенный в направлении созвездия Киля перпендикулярно α Квадранту. В Бета-Квадранте располагаются владения Клингонской звёздной империи, а также Ромуланской звёздной империи, некоторая часть Квадранта принадлежит и Федерации. Федерации плохо известна картография Бета-Квадранта — в основном по причине перекрывания дальнейшего доступа к остальной части Квадранта Клингонской и Ромуланской империями: известно, что в 2566 году клингоны присоединились к Федерации — вероятно, тогда началось более активное освоение Квадранта, потому как барьеров больше не стало. В 2293 году крейсер типа «Эксельсиор» под командованием капитана Салу закончил трёхлетний исследовательский рейс в Бета-Квадранте, который включал каталогизирование газообразных аномалий Квадранта. 70 лет спустя «Олимп» под командованием Лайзы Кузак семь лет исследовал Бета-Квадрант. С большой долей вероятности можно предположить, что большинство миссий NX-01 имели место в Бета-Квадранте и лишь часть — в α Квадранте.

Гамма-квадрант

Гамма-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Его границы определённы меридианом, проходящим через галактическое ядро вблизи Солнечной системы и вторым меридианом, перпендикулярным первому. Ближайшая к Земле граница Гамма-квадранта расположена примерно в 30 000 световых годах от неё. Стабильная Баджорская червоточина соединяет Баджорский сектор в Альфа-квадранте с системой Идран, расположенной в Гамма-квадранте.

Дельта-квадрант

Дельта-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Его границы определены меридианом, проходящим через галактическое ядро вблизи Солнечной системы, и вторым меридианом, перпендикулярным первому. Ближайшая точка до Земли расположена примерно в 30 000 световых годах от Земли. В квадрант входит часть Рукава Центавра, а также шаровые звёздные скопления M14 (NGC 6402) и M80 (NGC 6093).

Впервые люди были заселены в Дельта-квадрант расой под названием бриори примерно в 1937 году для использования в качестве рабов. Но рабы восстали, а их потомки основали новую цивилизацию на планете L-класса. Впервые люди самостоятельно посетили этот сектор космоса в звёздную дату 32629.4, когда звездолёту «Рэйвен» удалось проследовать за кораблём боргов через трансварповый канал. Первая миссия Звёздного флота в Дельта-квадранте совпала с инспекцией Барзанской червоточины в 2366 году.

Отрывок, характеризующий Browning M1921

Все смущение и неловкость Пьера, при удалении Наташи, мгновенно исчезли и заменились взволнованным оживлением. Он быстро придвинул кресло совсем близко к княжне Марье. – Да, я и хотел сказать вам, – сказал он, отвечая, как на слова, на ее взгляд. – Княжна, помогите мне. Что мне делать? Могу я надеяться? Княжна, друг мой, выслушайте меня. Я все знаю. Я знаю, что я не стою ее; я знаю, что теперь невозможно говорить об этом. Но я хочу быть братом ей. Нет, я не хочу.. я не могу… Он остановился и потер себе лицо и глаза руками. – Ну, вот, – продолжал он, видимо сделав усилие над собой, чтобы говорить связно. – Я не знаю, с каких пор я люблю ее. Но я одну только ее, одну любил во всю мою жизнь и люблю так, что без нее не могу себе представить жизни. Просить руки ее теперь я не решаюсь; но мысль о том, что, может быть, она могла бы быть моею и что я упущу эту возможность… возможность… ужасна. Скажите, могу я надеяться? Скажите, что мне делать? Милая княжна, – сказал он, помолчав немного и тронув ее за руку, так как она не отвечала. – Я думаю о том, что вы мне сказали, – отвечала княжна Марья. – Вот что я скажу вам. Вы правы, что теперь говорить ей об любви… – Княжна остановилась. Она хотела сказать: говорить ей о любви теперь невозможно; но она остановилась, потому что она третий день видела по вдруг переменившейся Наташе, что не только Наташа не оскорбилась бы, если б ей Пьер высказал свою любовь, но что она одного только этого и желала. – Говорить ей теперь… нельзя, – все таки сказала княжна Марья. – Но что же мне делать? – Поручите это мне, – сказала княжна Марья. – Я знаю… Пьер смотрел в глаза княжне Марье. – Ну, ну… – говорил он. – Я знаю, что она любит… полюбит вас, – поправилась княжна Марья. Не успела она сказать эти слова, как Пьер вскочил и с испуганным лицом схватил за руку княжну Марью. – Отчего вы думаете? Вы думаете, что я могу надеяться? Вы думаете?! – Да, думаю, – улыбаясь, сказала княжна Марья. – Напишите родителям. И поручите мне. Я скажу ей, когда будет можно. Я желаю этого. И сердце мое чувствует, что это будет. – Нет, это не может быть! Как я счастлив! Но это не может быть… Как я счастлив! Нет, не может быть! – говорил Пьер, целуя руки княжны Марьи. – Вы поезжайте в Петербург; это лучше. А я напишу вам, – сказала она. – В Петербург? Ехать? Хорошо, да, ехать. Но завтра я могу приехать к вам? На другой день Пьер приехал проститься. Наташа была менее оживлена, чем в прежние дни; но в этот день, иногда взглянув ей в глаза, Пьер чувствовал, что он исчезает, что ни его, ни ее нет больше, а есть одно чувство счастья. «Неужели? Нет, не может быть», – говорил он себе при каждом ее взгляде, жесте, слове, наполнявших его душу радостью. Когда он, прощаясь с нею, взял ее тонкую, худую руку, он невольно несколько дольше удержал ее в своей. «Неужели эта рука, это лицо, эти глаза, все это чуждое мне сокровище женской прелести, неужели это все будет вечно мое, привычное, такое же, каким я сам для себя? Нет, это невозможно!..» – Прощайте, граф, – сказала она ему громко. – Я очень буду ждать вас, – прибавила она шепотом. И эти простые слова, взгляд и выражение лица, сопровождавшие их, в продолжение двух месяцев составляли предмет неистощимых воспоминаний, объяснений и счастливых мечтаний Пьера. «Я очень буду ждать вас… Да, да, как она сказала? Да, я очень буду ждать вас. Ах, как я счастлив! Что ж это такое, как я счастлив!» – говорил себе Пьер.

Sturmgewehr 44 — штурмовая винтовка Второй мировой войны: история появления на фронте, достоинства и недостатки

Еще дальше

Ну и, раз мы упомянули скорость движения относительно центра Галактики, необходимо разобраться и тут. Галактический северный полюс выбран так же, как и земной — произвольно по соглашению. Он находится недалеко от звезды Арктур (альфа Волопаса), примерно вверх по направлению крыла созвездия Лебедя. А в целом проекция созвездий на карту Галактики выглядит так:

Т.е. Солнечная система движется относительно центра Галактики в направлении созвездия Лебедя, а относительно местных звезд в направлении созвездия Геркулеса, под углом 63° к галактической плоскости, <-/, если смотреть с внешней стороны Галактики, северный полюс сверху.
 

Класс и общее строение

Наша галактика — типичная спиральная галактика с перемычкой, SBbc. Сегодня считается, что спиральные галактики составляют 55% от числа всех галактик Вселенной. А галактики с перемычкой являются наиболее распространенным подтипом — это две третьих всех спиральных галактик. Спирально-перемычечные «звездные острова» ученые считают достаточно молодым типом галактик. Со временем, когда ресурсы галактики исчерпываются, перемычка исчезает.

Снимок центра Млечного Пути

А в чем вообще суть этой перемычки, и как она выглядит? Давайте вкратце разберемся, как построен наш Млечный Путь. Ибо его составные части — единственные вещи относительно галактик, в которых астрономы более-менее уверены.

  • Вы уже точно знаете, что внутри Млечного Пути находится ядро — центральная часть галактики, сосредоточение ее массы, вокруг которой располагаются все остальные части «звездного острова». Во Млечном Пути его образует группа звезд и туч пыли, которые на большой скорости движутся вокруг сверхмассивной черной дыры Стрелец А*. Ядро нашей галактики принадлежит к активным, поскольку выделяет больше энергии, чем суммарно все составляющие его звезды.
  • Дальше идет балдж (от англ. «вздутие, выпуклость») — сферическая объемная оболочка центра Млечного Пути. Его составляют крупные звезды-гиганты, старые светила и раскаленные газы, которые вращаются вокруг ядра с громадными скоростями. Балдж — самая концентрированная и наиболее яркая часть не только нашей, но и любой другой галактики. Но мы почти его не видим, поскольку он закрыт он нас рукавами Млечного Пути и собственной облачной оболочкой.

Центр, балдж и гало

  • По обе стороны от балджа отходит перемычка — мостик, к которому крепятся галактические рукава Млечного Пути. Часто ее не выделяют в отдельный компонент: без рукавов на фоне, балдж сливается с перемычкой, оставляя только небольшое утолщение в центре. Перемычку можно сравнить с оживленным и бурным руслом реки. Здесь постоянно нагнетаются потоки галактических газов и пыли, что приводит к активному образованию звезд.
  • От краев перемычки раскручиваются два главных рукава спирали Млечного Пути — рукава Щита-Кентавра и Персея. Их назвали в честь созвездий земного неба, совпадающих с ними. Существует еще минимум 5 меньших рукавов, которые ответвляются параллельно главным. Однако они являются всего лишь частью галактического диска — тонкого слоя галактики, в котором концентрируется большая часть ее видимого вещества. Толщина диска Млечного Пути равна 2 тысячам световых лет, что довольно мало в сравнении с 180 тысячами с.л. диаметра.

Интересный факт. Рукава — это весьма необычная структура. Когда газ и пыль сохраняют свою спиральную форму и вращаются вместе с галактикой, звезды полностью самостоятельные — они покидают «родительские» рукава и улетают в другие. Существует только один небольшой промежуток, где движение звезд и рукавов синхронно — в этом секторе находится наше Солнце. Астрономы считают, что именно нахождение в таком спокойном месте позволило жизни на Земле сформироваться. Столкновения с облаками галактической пыли и близкие контакты с другими звездами серьезно бы повлияли на планетную систему Солнца.

Галактические рукава и невидимая зона Млечного Пути

Остальную же часть галактики составляет гало. Никто не знает, как далеко оно простирается и где заканчивается. Гало преимущественно заполнено темной материей, которую не так-то просто обнаружить. Однако в нем присутствуют и видимые части. В астрономии их называют сфероидальным компонентом Млечного Пути. Это те видимые светила и облака газов, которые не причисляются к звездному диску — например, шаровые скопления. Светила в них сбиты очень тесно: на кубический парсек в них от 700 до 7000 раз больше звезд!

Шаровые скопления звезд движутся по вытянутым орбитам вокруг Млечного Пути и не контактируют с его газопылевым диском, «заправочной станцией» звездообразования. Поэтому газов у них почти нет, а все звезды приблизительно одного поколения. Но есть скопления, которые выбиваются из этого правила. Они очень плотны, их масса достигает миллионов солнечных масс, и состоят из звезд различного возраста.

Спутники Млечного Пути

Загадка происхождения столь необычных объектов оказалась проста — это остатки ядер тех галактик, которые Млечный Путь поглотил в прошлом. Невероятно, но такие вот «косточки» бывших спутников составляют около четверти всех шаровых звездных скоплений нашей галактики.

Особенности двигателя и эксплуатационное обслуживание

Двигатель 740 марки для грузовых транспортных средств от камского предприятия впервые был выпущен в 1975 году. Агрегат представлял собой первый в своем роде ДВС непосредственно для установки на КамАЗ. Устройство оборудовано 8-ми цилиндровым V-образным блоком цилиндров из чугуна, техническая величина угла развала составляет 90 о при смещении рядов цилиндров на 29,5 мм, производителем также были добавлены мокрые гильзы из чугуна.

Блок оборудована стальным коленвалом, который поддерживает ход поршня – 120 мм. Использованы шатунные шейки на 80 мм и коренные на 95 мм. Длина шатунов составляет 225 мм, в основе использована прочная сталь, высота алюминиевых поршней – 75,7 мм, добавлено равномерное смещение камеры сгорания от центральной части на 5 мм. Поршневой палец с величиной – 45 мм. Следует учитывать, что система дополнительного охлаждения турбоверсии представлена масляными форсунками, которые размещены в блоке цилиндров. Система поддерживает давление масла – 4.0-5.5 кгс/см2.

В верхней части блока раздельно помещены чугунные головки с отдельным цилиндром на каждой из них, ГБЦ оснащены по паре клапанов. Тарелки выпускных клапанов с диаметром 46,6 мм, а впускных – 51,6 мм. Распредвал установлен непосредственно в блоке цилиндров, при этом устройство через штанги, коромысла и толкатели запускает в работу клапаны. От коленчатого вала добавлен шестеренчатый привод распредвала.

Стандартный мотор Евро-0 отличается следующими техническими характеристиками: подъем – 14,2/13,7 при фазе 242/256 мм. Настройка для корректной работы клапанов на силовом агрегате производится в зависимости от особенностей работы устройства. Показатель зазора выпускного клапана – 0,4мм, а впускного – 0,3 мм. Производителем заявлен порядок настройки для работы клапанов: 1-5-4-2-6-3-7-8. Помогать в настройке ДВС помогает насос типа ЯЗДА 33, а также форсунки 33-03/10. Более поздние варианты двигателей оснащались другими версиями.

  • Среди технических особенностей двигателей стандарта Евро-1 выделяется оригинальный коленвал, поршневые пальцы и сами поршни, поршневые кольца, обновленная головка. Также производитель использовал турбонаддув без добавления интеркулера, установлен производительный насос ЯЗДА 337, форсунки 273.
  • Силовые агрегаты под стандарт Евро-2 с обеспечением хода 120 мм применяется коленвал и другие крепления маховика, специальные поршни от устройства Евро-1, система промежуточного охладителя воздуха. В некоторых случаях моторы стандарта Евро-2 оснащаются ходом поршня 130 мм, благодаря чему обеспечивается функциональный объем 11,76 литров. Использованы поршни с высотой 70.7 мм, производитель применяет свои гильзы.
  • Оборудование стандарта Евро-3 разработано на базе Евро-2, отличается головками повышенной прочности, обновленным коленвалом, форсунками 274, поршневыми кольцами.
  • Моторы для Камаз Евро-4 оснащены обновленными поршнями, поршневыми кольцами, пальцами, головками с добавлением продвинутой системы впрыска Common rail, а также продвинутым SCR-катализатором.

Варианты силовых агрегатов без использования SCR согласно классификации соответствуют классу Евро-4, что указано в Правилах (96-02). Камазы 749 стандарта Евро-4 оснащаются ТНВД серии Bosch СР3.4, который поддерживает рабочее давление системы впрыска до 1600 бар. Обеспечивается контроль за такими через ЭБУ Bosch EDC7UC31. Такие силовые агрегаты оснащаются парой турбин ТКР-700-01 и ТКР-700-02. Аналогичные по техническим возможностям устройства – CZ К27-145, CZ К27-49, ТКР 7С-6. В комплекте с вариантами 7403 поставляются турбокомпрессоры серий ТКР 7Н1К-01 и ТКР 7Н1К-02.

Вторая космическая скорость

Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела.

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой:

  • для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца.
  • для Солнца вторая космическая скорость составляет 617,7 км/с.
  • для Луны скорость убегания равна 2,4 км/с, несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.

Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.

Формула

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния .

Тюнинг двигателей КамАЗ-740

Автомат подводный АПС патрон калибр 5,66 мм. Устройство

Знакомство с Солнечной системой

Солнечная система является частью спиралевидной галактики — Млечного пути. В самом ее центре находится Солнце – самый большой обитатель Солнечной системы. Солнце – это горячая звезда, состоящая из газов – водорода и гелия. Оно производит огромное количество тепла и энергии, без которых жизнь на нашей планете была бы просто невозможна.

Сколько существует планет?

Вокруг него вращается 8 планет, у которых есть свои спутники, астероиды, кометы и различные метеорные тела. Время образования планет — около 4,6 миллиона лет назад, в результате преобразования космической пыли на большой скорости в плотные тела.
Планетами Солнечной системы являются космические тела, которые движутся по орбите вокруг Солнца и вокруг своей оси, имеют сфероидную форму и обладают определенной массой. Также они способны очищать близлежащее пространство от посторонних объектов.
Рис.1. Карта Солнечной системыНазвания этих планет следующие:

  • Юпитер;
  • Меркурий;
  • Марс;
  • Уран;
  • Земля;
  • Венера;
  • Сатурн;
  • Нептун.

Общим для всех планет является то, что все они движутся относительно Солнца против часовой стрелки, кроме Венеры. Но есть и различия – по своим характеристикам они делятся на земную группу и планеты-гиганты. На рис.1 показана карта Солнечной системы, на которой наглядно видно расположение всех планет и их удаленность от самой яркой звезды.

Чем отличается земная группа?

Планеты земной группы близко расположены к Солнцу — Меркурий, Венера, Земля и Марс.  Их отличительными особенностями являются маленькие размеры, небольшая масса и твердая поверхность. Но при этом у них большая плотность.

Рис. 2. Схема вращение Земли

Какие есть планеты-гиганты?

К планетам-гигантам относятся Юпитер, Сатурн, Уран и Нептун. Они же, наоборот, обладают большими размерами, но небольшой плотностью из-за своего газового состава из водорода и гелия.  Эти планеты удалены на большие расстояния от Солнца, поэтому самые дальние из них — Нептун и Уран, содержат большое количество льда и именуются ледяными гигантами. Планеты данного типа обладают большим количеством спутников, в отличие от планет земной группы, и обладают высокой скоростью вращения.Спутниками называются небольшие тела, вращающиеся вокруг планет.Область между планетами наполнена небольшими твердыми частицами и разреженными газами.

Проверяем ученых

Астрономия говорит, что угол между плоскостями эклиптики и Галактики составляет 63°.

Хорошо, одна плоскость у нас есть. Но как получить наглядную линию эклиптики? Давайте подумаем, что такое вообще эклиптика? По современному строгому определению эклиптика — это сечение небесной сферы плоскостью орбиты барицентра (центра массы) Земля-Луна. По эклиптике в среднем движется Солнце, но у нас нет двух Солнц, по которым удобно построить линию, да и созвездие Лебедя при солнечном свете не будет видно. Но если вспомнить, что планеты Солнечной системы тоже движутся приблизительно в той же плоскости, то, получается, что парад планет как раз примерно покажет нам плоскость эклиптики. И сейчас в утреннем небе как раз можно наблюдать Марс, Юпитер и Сатурн.

В результате, в ближайшие недели утром до восхода Солнца можно будет очень наглядно видеть вот такую картину:

Которая, как это ни удивительно, прекрасно согласуется с учебниками астрономии.

А гифку правильнее рисовать так:

Вопрос может вызвать взаимное положение плоскостей. Летим ли мы <-/ или же <-\ (если смотреть с внешней стороны Галактики, северный полюс вверху)? Астрономия говорит, что Солнечная система движется относительно ближайших звезд в направлении созвездия Геркулеса, в точку, расположенную недалеко от Веги и Альбирео (бета Лебедя), то есть правильное положение <-/. 

Но этот факт, увы, «на пальцах» не проверить, потому что, пусть и сделали это двести тридцать пять лет назад, но использовали результаты многолетних астрономических наблюдений и математику.

Самая большая планета Солнечной системы

Самой большой планетой Солнечной системы, и наиболее массивной из них, является Юпитер. Его экваториальный диаметр равен 143884 км. Что в 11,209 раз превышает диаметр Земли и составляет 0,103 диаметра Солнца. По объему Юпитер эквивалентен 1319 объемам Земли. Масса Юпитера в 318 раз превышает массу Земли, и в 2,5 раза больше массы всех остальных планет, вместе взятых. Для того, чтобы образовалась масса, равная массе Солнца, потребуется 1047 таких планет, как Юпитер.

Экваториальный диаметр следующей самой большой планеты, Сатурна, составляет 0,84 диаметра Юпитера. А его масса равна 0,30 массы самой большой планеты. Юпитер, как и Сатурн смог достичь столь больших размеров потому, что формировался в ранний период развития Солнечной системы в таком месте, где можно было собрать большое количества газа из протопланетной туманности.

Как вращаются планеты Солнечной системы?

Но сегодня у некоторых планет свой собственный спин в движении. Так, Венера вращается в противоположном направлении, как и Земля, а ось вращения Урана и вовсе наклонена на 90 градусов. Ученые не совсем понимают, почему эти планеты такие, но кое-какие идеи у них есть.

Столкновение Венеры с обломками, возможно, привело к тому, что она стала вращаться в другую сторону. Но есть и другая теория – согласно результатам исследования, опубликованного в журнале Nature в 2001 году, гравитационное взаимодействие с Солнцем наряду с другими факторами могло привести к замедлению и обратному вращению Венеры. В случае с Ураном исследователи предположили, что столкновения, а точнее одно крупное происшествие с участием нескольких объектов могло привести к вращению планеты в другую сторону.

На изображении симуляция вращения объектов во время формирования Солнечной системы

Астероиды вращаются. Звезды вращаются. Галактики вращаются – по данным NASA, Солнечной системе нужно 230 миллионов лет, чтобы завершить один оборот вокруг Млечного Пути. Но одними из самых быстрых объектов во Вселенной являются пульсары – плотные вращающиеся объекты, которые по сути являются мертвыми массивными звездами. Существуют пульсары, которые могут вращаться сотни раз в секунду. Самый быстрый из известных науке был обнаружен в 2006 году и получил название Terzan 5ad. Он вращается 716 раз в секунду.

Наша Солнечная система – ничем не примечательна по меркам Вселенной

Как пишет Live Science, черные дыры могут быть еще быстрее. Одна из них, согласно результатам исследования 2006 года, под названием GRS 1915+105 вращается где-то от 920 до 1150 раз в секунду! Можете себе представить?

Но все космические объекты – отнюдь не вечный двигатель – они замедляются. Когда Солнце сформировалось, оно вращалось вокруг своей оси каждые четыре дня, в то время как сегодня на один оборот уходит около 25 дней. Исследователи полагают, что его магнитное поле взаимодействует с солнечным ветром, что и замедляет его вращение. Более того, вращение Земли тоже замедляется. Гравитация Луны притягивает Землю таким образом, что слегка замедляет ее движение. А проведенное в 2016 году исследование, опубликованное в журнале Proceedings of the Royal Society A, показало, что за столетие вращение Земли замедлилось на 1,78 миллисекунды. Как ни крути, Вселенная очень странная.

Читайте также

Структура Солнечной системы

Четыре из них имеют схожие свойства с Землёй: имеют высокую плотность, поскольку состоят по большей части из металлов и силикатов; обладают ядром планеты, состоящим преимущественно из железа и никеля; имеют мантию, состоящую из силикатов; не имеют колец.

Планеты земной группы ещё иногда называют внутренними. Это объясняется тем, что они занимают четыре первые орбиты. Ближе всех к Солнцу — Меркурий. Он же является самой маленькой планетой (в 18 раз меньше массы Земли).Венера лишь немного уступает по размерам нашей Земле. Однако, условия планет схожими никак не назовёшь. Из-за того, что Венера находится довольно близко к звезде (на второй орбите), она обладает самой высокой температурой — более 400°C. Соответственно, воды на ней очень мало.Марс по массе почти в десять раз меньше Земли. Расположен он на 4-ой орбите, за счёт чего на планете преобладают низкие температуры (в среднем, -50°C). Хоть некоторые, видя красный цвет Марса (из-за оксида железа), считают, что там жарко — это не так.

Оставшиеся 4 планеты системы — газовые гиганты. Это значит, что они куда массивнее Земли и состоят, в основном, из водорода, гелия, метана и иных элементов. Соответственно, они имеют относительно маленькую плотность.Ещё одной их особенностью является быстрое вращение вокруг своей оси (от 9 до 17 часов).Юпитер — самая большая из этих планет в Солнечной системе. Она превышает массой все остальные планеты вместе взятые в два с половиной раза. Вокруг Юпитера вращается 67 спутников, некоторые из них схожи по размерам с Меркурием.
Вторая по величине — планета Сатурн. Он широко известен благодаря своей красивой системе колец. Также интересен своей маленькой плотностью (средняя плотность Сатурна немного меньше плотности воды). Имеет 62 спутника, один из которых обладает атмосферой (единственный такой в системе).
Самым лёгким из гигантов является Уран. Превышает своей массой Землю всего лишь в 14 раз. Вокруг него вращается 27 спутников.
А вот по размерам самый маленький — Нептун. У него также меньше всего спутников — всего 14.

Помимо этих восьми основных планет, в системе также есть и множество других. Они все относятся к группе планет-карликов (таковыми они считаются, потому что не могут расчистить от других объектов свою орбиту).

Наиболее распространёнными объектами Солнечной система являются небольшие астероиды (несколько сотен тысяч). Они не имеют атмосферы, обладают неправильной формой и небольшими размерами. Но они также, как и планеты, вращаются вокруг Солнца и могут иметь спутники (раньше их называли малыми планетами).

Кометы — маленькие тела системы (обычно — пару километров). По большей части они состоят из летучих веществ (льдов), которые испаряются при достаточном приближении к Солнцу. Именно благодаря такому эффекту мы можем наслаждаться их красотой.Сейчас их насчитано более трёх тысяч. Но со временем летучие вещества из комет испаряются и они переходят в разряд астероидов.

Планеты земного типа

Меркурий

Самая маленькая планета Солнечной системы имеет радиус всего 2440 км. Период обращения вокруг Солнца, для простоты понимания приравненный к земному году, составляет 88 дней, при этом оборот вокруг собственной оси Меркурий успевает совершить всего полтора раза. Таким образом, его сутки длятся приблизительно 59 земных дней. Долгое время считалось, что эта планета все время повёрнута к Солнцу одной и той же стороной, поскольку периоды его видимости с Земли повторялись с периодичностью, примерно равной четырем Меркурианским суткам.  Это заблуждение было развеяно с появлением возможности применять радиолокационные исследования и вести постоянные наблюдения с помощью космических станций. Орбита Меркурия – одна из самых нестабильных, меняется не только скорость перемещения и его удалённость от Солнца, но и само положение. Любой интересующийся может наблюдать этот эффект.

Меркурий в цвете, снимок космического аппарата MESSENGER

Близость к Солнцу стала причиной того, что Меркурий подвержен самым большим перепадам температуры среди планет нашей системы. Средняя дневная температура составляет около 350 градусов по Цельсию, а ночная -170 °C. В атмосфере выявлены натрий, кислород, гелий, калий, водород и аргон. Существует теория, что он был ранее спутником Венеры, но пока это остается недоказанным. Собственные спутники у него отсутствуют.

Венера

Вторая от Солнца планета, атмосфера которой почти полностью состоит из углекислого газа. Её часто называют Утренней звездой и Вечерней звездой, потому что она первой из звёзд становится видна после заката, так же как и перед рассветом продолжает быть видимой и тогда, когда все остальные звёзды скрылись из поля зрения. Процент диоксида углерода составляет в атмосфере 96%, азота в ней сравнительно немного – почти 4% и в совсем незначительном количестве присутствует водяной пар и кислород.

Венера в УФ спектре

Подобная атмосфера создает эффект парника, температура на поверхности из-за этого даже выше, чем у Меркурия и достигает 475 °C. Считается самой неторопливой, венерианские сутки длятся 243 земных дня, что почти равно году на Венере – 225 земных дней. Многие называют её сестрой Земли из-за массы и радиуса, значения которых очень близки к земным показателям. Радиус Венеры составляет 6052 км (0,85% земного). Спутников, как и у Меркурия, нет.

Земля

Третья планета от Солнца и единственная в нашей системе, где на поверхности есть жидкая вода, без которой не смогла бы развиться жизнь на планете. По крайней мере, жизнь в том виде, в котором мы её знаем. Радиус Земли равен 6371 км и, в отличие от остальных небесных тел нашей системы, более 70% её поверхности покрыто водой. Остальное пространство занимают материки. Ещё одной особенностью Земли являются тектонические плиты, скрытые под мантией планеты. При этом они способны перемещаться, хоть и с очень малой скоростью, что со временем вызывает изменение ландшафта. Скорость перемещения планеты по ней – 29-30 км/сек.

Наша планета из космоса

Один оборот вокруг своей оси занимает почти 24 часа, причем полное прохождение по орбите длится 365 суток, что намного больше в сравнении с ближайшими планетами-соседями. Земные сутки и год также приняты как эталон, но сделано это лишь для удобства восприятия временных отрезков на остальных планетах. У Земли имеется один естественный спутник – Луна.

Марс

Марс, снимок космического телескопа Хаббл в 2003 году

Четвёртая планета от Солнца, известная своей разрежённой атмосферой. Начиная с 1960 года, Марс активно исследуется учеными нескольких стран, включая СССР и США. Не все программы исследования были успешными, но найденная на некоторых участках вода позволяет предположить, что примитивная жизнь на Марсе существует, или существовала в прошлом.

Яркость этой планеты позволяет видеть его с Земли без всяких приборов. Причем раз в 15-17 лет, во время Противостояния, он становится самым ярким объектом на небе, затмевая собой даже Юпитер и Венеру.

Радиус почти вдвое меньше земного и составляет 3390 км, зато год значительно дольше – 687 суток. Спутников у него 2 — Фобос и Деймос.

Девятая планета

Многие еще со школы помнят, какая девятая планета Солнечной системы. Но было решено считать Плутон карликовой планетой. Но хотя, Плутон и утратил с 2006 года статус планеты, он является одним из интереснейших объектов для изучения в поясе Койпера (на окраине системы).

В 2016 году астрономами К. Батыгиным и М. Брауном была заявлено предположение о том, что есть еще одна планета в нашей системе. Предполагаемая «планета 9», как ее именуют, может иметь массу в 10 раз превосходящую массу нашей Земли. Девятая планета Солнечной системы, по предположениям, должна находиться на расстоянии в 20 раз дальше Нептуна, а год на ней длится 10-20 тысяч лет.

Но на сегодня Международным астрономическим союзом признаны лишь 8 планет. И запомнить эти планеты Солнечной системы по порядку совсем не сложно.

Самый близкий подход кометы к Земле

Среди зарегистрированных сближений комет наиболее близко к Земле подходила комета Лекселя в 1770 г. Наименьшее расстояние до Земли было достигнуто 1 июля 1770 г. Оно составило 0,015 астрономической единицы (2,244 миллиона километров). Это в шесть раз превышает расстояние до Луны. Когда комета находилась ближе всего, видимый размер ее комы был равен почти пяти диаметрам полной Луны.

Комета была открыта Шарлем Мессье 14 июня 1770 г. Но свое название она получила по имени Андерса Иоганна (Андрея Ивановича) Лекселя. Именно он определил орбиту кометы и опубликовал результаты своих вычислений в 1772 и 1779 гг. Ученый обнаружил, что в 1767 г. комета близко подошла к Юпитеру. И под действием его гравитации перешла на орбиту, которая проходила вблизи Земли. Однако при следующем, еще более близком подходе к Юпитеру, возмущение траектории кометы Лекселя оказалось настолько большим, что с Земли она больше никогда не наблюдалась.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector