Экскурсия в космос: как работает невесомость?

1.11. Вес и невесомость window.top.document.title = «1.11. Вес и невесомость»;

Силу тяжести с которой тела притягиваются к Земле, нужно отличать от веса тела. Понятие веса широко используется в повседневной жизни.

Весом тела называют силу, с которой тело вследствие его притяжения к Земле действует на опору или подвес. При этом предполагается, что тело неподвижно относительно опоры или подвеса. Пусть тело лежит на неподвижном относительно Земли горизонтальном столе (рис. 1.11.1). Систему отсчета, связанную с Землей, будем считать инерциальной. На тело действуют сила тяжести направленная вертикально вниз, и сила упругости с которой опора действует на тело. Силу называют силой нормального давления или силой реакции опоры. Силы, действующие на тело, уравновешивают друг друга: В соответствии с третьим законом Ньютона тело действует на опору с некоторой силой равной по модулю силе реакции опоры и направленной в противоположную сторону: По определению, сила и называется весом тела. Из приведенных выше соотношений видно, что т. е. вес тела равен силе тяжести Но эти силы приложены к разным телам!

Рисунок 1.11.1.Вес тела и сила тяжести. – сила тяжести, – сила реакции опоры, – сила давления тела на опору (вес тела).

Если тело неподвижно висит на пружине, то роль силы реакции опоры (подвеса) играет упругая силы пружины. По растяжению пружины можно определить вес тела и равную ему силу притяжения тела Землей. Для определения веса тела можно использовать также рычажные весы, сравнивая вес данного тела с весом гирь на равноплечем рычаге. Приводя в равновесие рычажные весы путем уравнивая веса тела суммарным весом гирь, мы одновременно достигаем равенства массы тела суммарной массе гирь, независимо от значения ускорения свободного падения в данной точке земной поверхности. Например, при подъеме в горы на высоту 1 км показания пружинных весов изменяются на 0,0003 от своего значения на уровне моря. При этом равновесие рычажных весов сохраняется. Поэтому рычажные весы являются прибором для определения массы тела путем сравнения с массой гирь (эталонов).

Рассмотрим теперь случай, когда тело лежит на опоре (или подвешено на пружине) в кабине лифта, движущейся с некоторым ускорением относительно Земли. Система отсчета, связанная с лифтом, не является инерциальной. На тело по-прежнему действуют сила тяжести и сила реакции опоры но теперь эти силы не уравновешивают друг друга. По второму закону Ньютона

Сила действующая на опору со стороны тела, которую и называют весом тела, по третьему закону Ньютона равна Следовательно, вес тела в ускоренно движущемся лифте есть

Пусть вектор ускорения направлен по вертикали (вниз или вверх). Если координатную ось OY направить вертикально вниз, то векторное уравнение для можно переписать в скалярной форме:

В этой формуле величины P, g и a следует рассматривать как проекции векторов , и на ось OY. Так как эта ось направлена вертикально вниз, g = const > 0, а величины P и a могут быть как положительными, так и отрицательными. Пусть, для определенности, вектор ускорения направлен вертикально вниз, тогда a > 0 (рис. 1.11.2).

Рисунок 1.11.2.Вес тела в ускоренно движущемся лифте. Вектор ускорения направлен вертикально вниз. 1) a < g, P < mg; 2) a = g, P = 0 (невесомость); 3) a > g, P < 0

Из формулы (*) видно, что если a < g, то вес тела P в ускоренно движущемся лифте меньше силы тяжести. Если a > g, то вес тела изменяет знак. Это означает, что тело прижимается не к полу, а к потолку кабины лифта («отрицательный» вес). Наконец, если a = g, то P = 0. Тело свободно падает на Землю вместе с кабиной. Такое состояние называется невесомостью. Оно возникает, например, в кабине космического корабля при его движении по орбите при выключенными реактивных двигателями.

Если вектор ускорения направлен вертикально вверх (рис. 1.11.3), то a < 0 и, следовательно, вес тела всегда будет превышать по модулю силу тяжести. Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называют перегрузкой. Действие перегрузки испытывают космонавты, как при взлете космической ракеты, так и на участке торможения при входе корабля в плотные слои атмосферы. Большие перегрузки испытывают летчики при выполнении фигур высшего пилотажа, особенно на сверхзвуковых самолетах.

Рисунок 1.11.3.
Вес тела в ускоренно движущемся лифте. Вектор ускорения направлен вертикально вверх. Вес тела приблизительно в два раза превышает по модулю силу тяжести (двукратная перегрузка)

Модель.
Человек в лифте

Зачем армии космос

Армия и космос – близнецы-братья. Напомню, что Юрий Гагарин улетел в первый космический полёт старшим лейтенантом, а вернулся майором Советской армии. Армия оценила подвиг.

Первый космонавт Юрий Гагарин – майор Советской Армии

Все космонавты первого призыва были военными летчиками. Только во втором наборе появилось несколько инженеров. Да и те работали в ракетном КБ. Сама космическая отрасль была задумана и появилась в стране как средство доставки ядерных боезарядов с континента на континент.

Беспилотная космонавтика

Три классических военных аспекта космоса: боевые баллистические ракеты, спутники связи и системы геолокации. Ни одна из частей этой триады не является пилотируемой. Это означает, что воздействие невесомости на человека отдыхает. Нет экипажа космического аппарата – нет влияния отсутствия силы тяжести на человека. Большую часть своей траектории баллистическая ракета летит в невесомости. Это необходимо учитывать, из этого исходить при расчетах, но человек здесь ни при чём, ощущение невесомости он не испытывает. Так что пока и поскольку военный космос не требует пилотируемых полётов, то терпеть невесомость и перегрузки офицерам не нужно.

Пилотируемая космонавтика

Но перед экипажем пилотируемого космического аппарата могут стоять военные задачи. Задачи дистанционного зондирования поверхности Земли всегда включают решение задач космической разведки, они нередко требуют активного участия членов экипажа.

Спутники-инспекторы часто требуют управления со стороны экипажа обитаемого космического аппарата. Особенно при боевой активности такого спутника-инспектора. В этом случае может осуществляться непосредственный визуальный контакт экипажа со спутником-инспектором, особенно при выполнении оперативных манёвров.

При выходе в открытый космос человек летит со скоростью 8 км/с

На орбитальной станции экипажи сменяют друг друга, как правило, через несколько месяцев: космонавты испытывают состояние невесомости по полгода и дольше. Вес тела невесомость компенсирует, при этом офицерам приходится ежедневно тренироваться под нагрузкой упругих элементов, моделируя работу организма в условиях гравитации, минимизируя эффект невесомости. Факты о невесомости таковы: после полета члены экипажа проходят серьезный и продолжительный процесс реабилитации, с трудом возвращают себя в привычную физическую форму. При условии возникновения изменений, их глубина зависит от того, какое время в невесомости провел человек. Длительность реабилитации сравнима со временем полета.

Невесомость

Из четвертой из указанных особенностей следует, что если у тела нет опоры, то у него отсутствует вес, реакции опоры также нет. Говорят, что тело находится в состоянии невесомости. В таком состоянии отсутствует как вес, так и реакция опоры. Заметим, что масса тела и сила тяжести остаются прежними. Поэтому тело в состоянии невесомости будет двигаться равноускоренно по направлению действия силы тяжести.

Наиболее известный пример движения в невесомости — это движение космического корабля по орбите. Единственная сила, которая на него действует, — это сила тяжести. Она сообщает кораблю центростремительное ускорение, благодаря которому орбита имеет круговую или эллиптическую форму.

Однако, для исследования веса тела и невесомости не обязательно запускать космические корабли. Любое тело в начале падения движется без опоры, а значит, находится в состоянии невесомости. Правда, время нахождения в таком состоянии невелико. По мере набора скорости, на тело начинает действовать сила сопротивления воздуха, которая представляет собой опору, и у тела появляется вес.

Полноценное (хотя и очень кратковременное) состояние невесомости испытывает человек во время обычного прыжка.

Рис. 3. Невесомость.

Что мы узнали?

Вес — это сила, с которой тело действует на опору. В отличие от силы тяжести, которая действует независимо от опоры, для существования веса опора необходима. Фактически, вес — это частный случай силы упругости. Если тело не имеет опоры, оно находится в состоянии невесомости.

  1. Вопрос 1 из 5

Начать тест(новая вкладка)

«Мозг в чане»

Так как же мозг справляется с микрогравитацией? Если коротко, то очень плохо — впрочем, информация об этом ограничена. Мы знаем, что лица космонавтов краснеют и раздуваются в невесомости — это явление ласково называют «эффектом Чарли Брауна». Происходит это по большей части потому, что жидкость, состоящая в основном из крови (клеток и плазмы) и спинномозговой жидкости, смещается к голове, в результате чего лица становятся одутловатыми и округлыми, а ноги — тонкими.

Эти смещения жидкости также связаны с «космической болезнью» (по аналогии с морской), головными болями и тошнотой. Недавно их также связали с помутнением зрения из-за нарастания давления при увеличении кровотока; сам мозг как бы всплывает в верхнюю часть черепа, оказывая на него давление. Несмотря на то, что NASA считает нарушение зрения и смещение мозга главным риском для здоровья любого человека на Марсе, выяснить, что его вызывает, а также как его предотвратить, пока не получилось.

Профессор физиологии и биохимии Дэмиен Бейли из Университета Южного Уэльса считает, что определенные части мозга в итоге получают слишком много крови, потому что в кровотоке накапливается оксид азота — невидимая молекула, которая обычно там плавает. Артерии, снабжающие мозг кровью, расслабляются, поэтому раскрываются сильнее. В результате этого подъема кровотока гематоэнцефалический барьер — «амортизатор» мозга — становится перегружен. Вода медленно накапливается, мозг разбухает, давление увеличивается.

Представьте, будто река выходит из берегов. Самое главное во всем этом, что в отдельные части мозга поступает недостаточно кислорода. Это большая проблема, которая может объяснить и затуманенность зрения, а также и другие эффекты, которые проявляются на способностях космонавтов думать, концентрироваться, рассуждать и двигаться.

№2

Наша масса тела на Земле зависит от двух характеристик: самого объема материала, из которого мы состоим и силы притяжения. Сила притяжения представляет собой неконтактную силу, какая воздействует на нас на расстоянии. Как следует из названия, «неконтактная сила» подразумевает под собой то, что нам не нужно касаться земли, чтобы действовала сила притяжения. Фактически, мы не чувствуем силу притяжения, если не существует противодействующей силы. Эта противодействующая сила называется контактной силой, то есть она действует на те объекты, какие контактируют друг с другом.

Например, когда мы стоим на земле, сила земного притяжения тянет наше тело к земле. А наши ступни в то же время испытывают контактную силу, которая толкает нас вверх. Когда нас кто-то толкает, мы испытываем контактную силу. Когда мы скользим по поверхности льда (сила трения), мы ощущаем контактную силу.

В невесомости контактные силы отсутствуют. Там действует только сила притяжения, какую мы, как уже было отмечено ранее, попросту не ощущаем.

Знакомьтесь: микрогравитация

Представьте себе, что вы одеты в скафандр и лежите на спине в летной кабине космического аппарата. Вы лежите на спине в течение нескольких часов, пока пилоты и центр управления полетами готовятся к запуску. Обычно, когда вы стоите прямо, сила тяжести тянет кровь вниз, поэтому целые бассейны ее собираются у вас в ногах. Однако, поскольку вы лежите на спине, кровь по-разному распределяется в вашем теле, в том числе накапливаясь и в голове, поскольку ваши ноги подняты. В голове немного тяжеловато, словно вы только что проснулись.

Ракетные двигатели зажигаются и вы чувствуете ускорение. Вас вдавливает в кресло, поскольку аппарат взлетает. Сила тяжести вместе с увеличением скорости корабля увеличивается в три раза (на некоторых американских горках можно испытать такой уровень ускорения). Ваша грудь сжимается, дышать становится немного трудно. Спустя восемь с половиной минут вы оказываетесь в космосе и начинаете испытывать совершенно другое ощущение: невесомость.

Правильный термин для невесомости — микрогравитация. Вы не невесомы, поскольку земная гравитация удерживает вас и летательный аппарат на орбите. Вы находитесь в состоянии свободного падения, словно только что прыгнули с самолета, за исключением того, что падаете горизонтально и никогда не упадете. Допустим, вы стоите на весах, и они показывают ваш вес, поскольку гравитация тянет вниз и вас, и весы. Поскольку весы находятся на земле, они отталкиваются вверх с равнозначной силой — и эта сила и есть ваш вес. Но если вы прыгнете со скалы, стоя на весах, и вы, и весы будете притягиваться гравитацией. Вы не будете давить на весы, и они не будут давить на вас. Ваш вес будет нулевым. Таков закон Ньютона.

Поскольку космический аппарат и все объекты в нем падают с одной скоростью — все, что не закреплено, плавает. Если у вас длинные волосы — они будут плавать вокруг лица. Если вы выльете воду из стакана — она соберется в большую сферическую каплю, которую можно будет разбить на меньшие капли. Галушки и конфеты сами будут заплывать вам в рот, если вы подтолкнете их по нужной траектории. Сидя в кресле, вы не будете знать, что сидите, поскольку ваше тело не будет давить на кресло. Если вы не будете держаться — вы уплывете. Более того, если вы не будете держаться за стену или пол рукой или ногой — вы не сможете сдвинуться с места — не от чего оттолкнуться. По этой причине в любом космическом аппарате всегда много поручней для рук и ног.

Методы имитации для изучения

Большинство общепринятых методов имитации невесомости воспроизводит давление крови, функциональные и другие сдвиги, которые возникают в этом состоянии.

Для имитации вестибулярных нарушений, развивающихся в условиях невесомости, используется калориметрическая проба (раздражение внутреннего уха теплой водой) и кресло для исследования вестибулярного аппарата с вращением испытуемого.

При вращении человека на кресле  возникает конвекция жидкости в полукружных каналах уха, что обычно вызывает нистагм (непроизвольное колебание глаз) и нередко вестибулярные нарушения.

При проведении теста астронавта в кресле на борту космического корабля «Шаттл» (США) также проявился нистагм. Этот результат не соответствовал научным ожиданиям, так как давно предложенная для объяснения вестибулярных нарушений теория была основана на рецепторах внутреннего уха, что возможно только в условиях гравитации. В отсутствие последнего метод не должен, казалось бы, работать. Авторы эксперимента полагают, что теория для объяснения вестибулярных нарушений должна быть пересмотрена.

Это является еще одним убедительным примером того, как знания, добытые в космических просторах, позволяют по-новому подходить к тайнам, лежащим в «нас самих». Так или иначе, изложенное выше наблюдение заслуживает внимания и подтверждения. Можно лишь предположить, что при вращении кресла может возникать так называемая искусственная гравитация, и тогда все остается на «прежних местах».

Вопрос имитации физиологических эффектов, свойственных состоянию невесомости на Земле, является базисным для космической медицины.

Целесообразность изучения эффектов состояния невесомости в земных условиях продиктована трудностями комплексных исследований в космическом полете, необходимостью тщательного подбора космонавтов и изучения тех изменений, которые могут наблюдаться во время космических полетов.

Горные орудия

Причины

Состояние невесомости имеет место, когда действующие на тело внешние силы являются только массовыми (силы тяготения), либо поле этих массовых сил локально однородно, то есть силы поля сообщают всем частицам тела в каждом его положении одинаковые по модулю и направлению ускорения (что при движении в поле тяготения Земли практически имеет место, если размеры тела малы по сравнению с радиусом Земли), либо начальные скорости всех частиц тела по модулю и направлению одинаковы (тело движется поступательно).

Например, космический аппарат и все находящиеся в нём тела, получив соответствующую начальную скорость, движутся под действием сил тяготения вдоль своих орбит практически с одинаковыми ускорениями (феномен присутствия ускорения после отключения тяги двигателя для тела, находящегося на орбите), как свободные; ни сами тела, ни их частицы взаимных давлений друг на друга не оказывают, то есть находятся в состоянии невесомости. При этом по отношению к кабине аппарата находящееся в нём тело может в любом месте оставаться в покое (свободно «висеть» в пространстве). Хотя силы тяготения при невесомости действуют на все частицы тела, но нет внешних поверхностных сил, которые могли бы вызывать взаимные давления частиц друг на друга.

Таким образом, любое тело, размеры которого малы по сравнению с земным радиусом, совершающее свободное поступательное движение в поле тяготения Земли, будет, при отсутствии других внешних сил, находиться в состоянии невесомости. Аналогичным будет результат для движения в поле тяготения любых других небесных тел.

В реальности для всех тел конечных размеров существует разность гравитационных ускорений, вызванная разницей в расстоянии разных точек тела от Земли. Эта небольшая разность стремится вытянуть тело в радиальном направлении.

Вес и невесомость

Совсем другое дело, когда тело ничего не весит. Все процессы в нем протекают иначе. Из-за отсутствия давления отолитов наступает нарушение ориентации в пространстве. Понятие «верх» и «низ» в космосе полностью исчезает. Вредит организму человека также отсутствие физической нагрузки. В таком состоянии мышечная ткань атрофируется, если не предпринимать никаких мер. С её деградацией страдает и костная ткань. При отсутствии нагрузки в кости тела поступает меньше фосфора.

Возникают сложности с питанием и глотанием жидкостей. Все жидкости при этом стремятся принять сферическую форму, что очень затрудняет повседневные вещи. Даже обычный насморк в условиях невесомости может оказаться очень тяжёлым испытанием для организма из-за того, что мокроты не выводятся под действием силы тяжести, а образуют сферические капли.

Для поддержания необходимого тонуса космонавты постоянно тренируются по несколько часов в день. При отходе ко сну привязывают себя специальными ремешками, чтобы не получить травму во время сна.

Для питания космонавтов разработана специальная пища в тюбиках и хлеб, который не крошится.

Прежде, чем длительное время испытывать невесомость, человек должен ощутить её действие на земле, чтобы выяснить, как в дальнейшем будет на него воздействовать отсутствие силы тяжести.

1 March. 10:30 (I’m late). Star City

Проходная на въезде в Звездный похожа на смесь кинотеатра и парикмахерской. Солдат поднимает шлагбаум рукой, пропуская машину на территорию.

The control post at the Star City entrance looks like a cross between a cinema and a hairdresser’s. The soldier lifts the boom barrier manually, letting the car onto the premises.

Сегодня  день медкомиссии и инструктажа.

Today’s programme: a medical and a training session.

По пути в гидролабораторию встречаются исторические здания. В этой 11-этажке жил Гагарин:

You can spot some historic buildings on your way to the hydrolab. Gagarin lived in this 11-storey building:

Тут находится центрифуга:

There’s a centrifuge in there:

Проходим медкомиссию. Окулист смотрит в глаз через лупу:

At my medical. The optician examines my eye through a magnifying glass:

Я вам разрешаю полет.

— I am clearing you to fly.

Вот краткая история отечественной космонавтики в картинках:

A short history of homegrown spaceflight in pictures:

А вот куски космических кораблей, на которых тренируются в бассейне.

Here you can see some pieces of spacecraft that they train on in the pool.

Бассейн занимает середину здания. Через иллюминаторы подсвечивается вода:

The pool takes up the middle part of the building. The water is lit up through the portholes.

А внутри плавают макет секции МКС и астронавты с аквалангистами:

Inside there’s a model of an ISS module, astronauts and divers:

В классе подготовки майор на примере авторучки объясняет принцип создания невесомости без выхода в космос.

During the training session a major uses a ballpoint pen to explain the principle of how zero gravity can be achieved without going up in space.

и делаем параболу.

— …and we trace a parabola.

На следующий день назначен полет.

The flight is scheduled for the following day.

Что такое нистагм?

С проблемами со зрением сталкивались очень многие астронавты, которым доводилось бывать на борту космической станции. Чаще всего они страдали от отека зрительных нервов, который очень мешает следить за тем, что происходит вокруг. Но есть и более странное явление, которое называется нистагмом. Оно представляет собой совокупность ритмичных движений глазного яблока, которые тоже мешают людям ориентироваться в пространстве. Существует множество причин возникновения нистагма и среди них числятся поражение мозга, отравление лекарственными средствами и так далее. Но почему же нистагм часто возникает именно во время пребывания в невесомости? Ученые почти нашли ответ на этот вопрос.

Нистагм проявляется примерно так

Древнейшие народы Передней Азии

Xiaomi Haylou T15: Дизайн

Внешний вид Haylou T15 существенно отличается от всех предыдущих наушников Haylou. Новинка получила прямоугольный зарядный кейс, а не овальный, как у предшественников. Форма самих наушников также изменилась. Теперь это компактные внутриканальные наушники с небольшой вытянутой ножкой.

Xiaomi Haylou T15 поставляются только в черном матовом цвете. Корпус, как обычно, выполнен из ABS пластика. Вес одного наушника составляет 37 грамм, а размер — 2.19 х 2.16 х 1.78 см.

Наушники очень компактные и практически незаметны во время использования.

Зарядный кейс также небольшого размера, поэтому его удобно носить как в одной руке, так и в кармане джинсов. Несмотря на компактные размеры, в зарядном кейсе установлена довольно большая батарея. Но об этом немного позже.

На верхней панели зарядного кейса мы видим логотип Haylou. На правой грани расположен разъём для зарядки кейса и небольшой светодиодный датчик.

Еще одной интересной особенностью новых наушников Xiaomi Haylou T15 является большая кнопка на передней панели кейса. С помощью этой кнопки вы можете проверить уровень заряда батареи самого кейса.

Открыв кейс, вы увидите три светодиодных датчика внутри. Нажмите кнопку и светодиодные датчики засветятся в зависимости от уровня заряда батареи.

Внутри зарядного кейса вы также найдете беспроводные наушники. На внутренней части наушников мы видим динамики с резиновыми амбушюрами и два коннектора для зарядки.

На внешней части каждого наушника находится светодиодный датчик и сенсорная панель управления.

Кстати, Xiaomi Haylou T15 защищены от воды по стандарту IPX5. Вы можете не прятать наушники в дождливую погоду или во время занятий спортом. Капли воды или пота не повлияют на качество их работы.

Способы испытать чувство невесомости в теории и на практике

Чувство невесомости полноценно можно испытать в космосе, но для этого нужно выбрать эту профессию и долгие годы готовится. Однако ощущение невесомости можно испытать и на Земле, хоть и незначительное.

На Земле невесомость можно смоделировать следующим способом. В экспериментальных целях и для тренировки космонавтом создавали состояние невесомости до 40 секунд с помощью специального самолета, который имел воздействие только силы земного притяжения. Траектория движения самолета проходит по параболе. Такие ощущения сейчас можно испытать и на специальных тренажерах, в парках аттракционов. Суть заключается в том, что резко набирается высота и также резко потом сбрасывается, вызывая ощущение свободного падения, невесомости.

Подобные ощущения мы испытываем на рейсах гражданской авиации в период посадки самолета, а также в автомобиле, при резком перепаде движения сверху вниз.

Помимо этого, схожие ощущения можно получить, прыгая на батуте, находясь в воздухе от прыжка непосредственно перед падением вниз, в современных скоростных лифтах при резкой остановке на высоком этаже.

Сейчас существуют специальные симуляторы невесомости, в которых Вы можете испытать это ощущение на борту специально оснащенного для этих нужд самолета ИЛ – 76. Это специальная лаборатория, предназначенная для испытания перегрузок, в том числе космонавтами перед полетами в космос. Во время полета, резко набирается высота и на высоте 8-9 км пилот выключает мощность двигателей, тем самым, позволяя самолету двигаться по инерции. Как раз, когда сила тяжести становится равна силе инерции, достигается невесомость. Во время полета группа испытывает на борту самолета несколько таких ощущений невесомости. Стоимость такого полета индивидуальна и может быть совмещена с экскурсией, космическим питанием и многим другим.

Масса

Масса обозначается символом \(m \), является скалярной величиной и в СИ измеряется в килограммах.

Иногда массу в условии некоторых задач задают в граммах или, например, в тоннах. Чтобы перевести массу в килограммы, используют такие формулы:

\

  • \( \large \text{(тонны)} \) – подставьте количество тонн вместо этой скобки;
  • \( \large \text{(центнеры)} \) – вместо этой скобки подставьте количество сотен килограммов;
  • \( \large \text{(граммы)} \) – подставьте количество граммов вместо этой скобки;
  • \( \large \text{(миллиграммы)} \) – вместо этой скобки подставьте количество миллиграммов;

От массы зависят инерционные и гравитационные свойства физических тел.

Масса в природе проявляет себя двумя способами. Поэтому, выделяют:

  1. массу инертную и
  2. массу гравитационную.

Инертная масса

Масса инертная влияет на способность тела двигаться по инерции. Такая масса используется в формуле .

Пусть два тела находятся в . Если какая-либо сила одинаково ускоряет эти тела, то они обладают одинаковой инертной массой. Здесь «одинаково ускоряет» следует понимать, как «сообщает одинаковые ускорения».

Гравитационная масса

Гравитационная масса определяет силу, с которой тело притягивается к другим телам. Эта масса используется в формуле закона всемирного тяготения.

Различные эксперименты показали, что инертная и гравитационная массы равны с высокой степенью точности. Поэтому, при изучении школьной физики можно просто говорить «масса», не уточняя, о какой именно массе идет речь.

Так же, масса входит в формулы для расчета импульса и механической энергии.

Массой обладают все макроскопические тела, а, так же, такие элементарные частицы, как протоны, нейтроны, электроны и т. д. Однако, существуют и частицы, у которых нет массы покоя, например – фотоны.

Примечание: Фотон – элементарная частица, переносчик электромагнитного взаимодействия, движется со скоростью света, часто проявляет волновые свойства. Подробнее о фотонах вы узнаете в основах квантовой физики.

Какова микрогравитация на вкус?

Когда вы впервые окажетесь в состоянии невесомости, вы почувствуете следующее:

— тошнота;

— дезориентация;

— головная боль;

— потеря аппетита;

— запор;

— еще кое-что…

Чем дольше вы будете оставаться в условиях микрогравитации, тем слабее будут ваши мышцы и кости. Эти ощущения будут вызваны различными изменениями в системах вашего организма. Давайте подробно рассмотрим, как тело реагирует на невесомость.

Космическая болезнь

Тошнота и дезориентация, которая на вкус как сосущее чувство в желудке, когда автомобиль «летит» вниз по трассе или вас подхватывает на карусели. Только на борту корабля это чувство будет длиться несколько дней. Это чувство космической болезни, слабость моторики, когда ваш мозг получает противоречивую информацию от вестибулярных органов, расположенных в вашем внутреннем ухе. Ваши глаза видят, куда двигаться вверх и вниз в корабле, но ваша вестибулярная система полагается на силу тяжести, определяя направления, что не работает в невесомости. Поэтому ваши глаза могут говорить мозгу, что вы движетесь сверху вниз, но мозг этого не поймет. Это вызывает дезориентацию и тошноту, что может привести к потере аппетита и рвоте. К счастью, спустя несколько дней мозг адаптируется и начнет реагировать исключительно на визуальные сигналы. Таблетки тоже помогут.

Одутловатое лицо и куриные лапки

В условиях микрогравитации ваше лицо будет одутловатым, а пазухи — перегруженными, что вызовет головную боль и нарушение моторики. На Земле это можно почувствовать, если стоять вверх ногами — кровь приливает к голове.

На Земле гравитация притягивает вашу кровь, в результате чего значительные ее объемы скапливаются в венах ног. Как только вы окажетесь в условиях микрогравитации, кровь сдвинется из ваших ног в грудь и голову. Лицо опухнет, а ноги, наоборот, уменьшатся в размерах.

Когда кровь переходит в грудь, сердце увеличивается в размерах и качает больше крови с каждым ударом. Почки отвечают на этот увеличенный кровоток производством большего количества мочи, будто вы выпили большой стакан воды. Кроме того, увеличение кровотока снижает уровень секреции гипофизом антидиуретического гормона (АДГ), что уменьшает жажду. Вы не будете хотеть пить столько же воды, сколько на Земле. В совокупности эти два фактора помогут вашей груди и голове избавиться от лишней жидкости за несколько дней, а поток жидкости вашего тела нормализуется (для космических условий). По возвращении на Землю, вы будете больше пить и чувствовать усталость, но это пройдет.

Космическая анемия

По мере того, как ваши почки выводят лишнюю жидкость, они также уменьшают секрецию эритропоэтина — гормона, стимулирующего производство красных кровяных тел клетками костного мозга. Снижение производства красных кровяных клеток сопровождается уменьшением объема плазмы, поэтому гематокрит (процент объема крови, занимаемого красными кровяными телами) такой же, как на Земле. По возвращении на Землю, ваш уровень эритропоэтина будет расти, так же как и количество красных кровяных тел.

Слабые мышцы

Когда вы находитесь в условиях микрогравитации, ваше тело принимает позу «зародыша»: вы немного сгибаетесь, ваши руки и ноги также принимают полусогнутое состояние. В таком положении вы не используете многие мышцы, особенно те, которые помогают вам поддерживать осанку (антигравитационные мышцы). По мере пребывания на борту МКС, ваши мышцы меняются. Их масса уменьшается, что приводит к «куриным лапкам». Ваше тело больше не нуждается в мышцах, которые медленно сокращаются, вроде тех, что используются в положении стоя. Нужны быстро сокращающиеся волокна, чтобы быстрее передвигаться по станции. Чем больше вы остаетесь на МКС, тем меньше у вас будет мышечной массы. Потеря мышечной массы ослабляет вас, и это, между прочим, является серьезной проблемой для длительных полетов, особенно после возвращения на Землю.

Остеопсатироз

На Земле ваши кости поддерживают вес вашего тела. Размер и масса костей тщательно сбалансированы. В условиях микрогравитации вашим костям больше не нужно поддерживать ваше тело, поэтому все ваши кости, особенно несущие, в районе бедер, ляжек и нижней части спины, используются меньше, чем на Земле. Размер и масса костей в невесомости уменьшаются примерно на 1% в месяц. В результате по возвращении на Землю они просто могут разрушиться. Неизвестно, каков процент восстанавливаемых костей после возвращения на Землю, но он точно не равен 100. Именно эта проблема вносит ограничения на время пребывания в космосе.

В дополнение к слабым костям, концентрация кальция в крови приводит к болезни почек, которым нужно этот избыточный кальций выводить. Могут образоваться камни в почках.

Отсутствие гравитации меняет нейронные связи

Ученые сделали фМРТ головного мозга одиннадцати космонавтам до и после полета, который длился в среднем шесть месяцев. Затем они сравнили данные томографии космонавтов с результатами добровольцев, которые не покидали Землю. Исследователей интересовали изменения в связях между зонами мозга, отвечающими за сенсомоторные функции — движение и восприятие положения тела. Для активизации этих зон использовалась стимуляция подошвы стоп, имитирующая походку.

На Земле восприятие пространства и положения тела регулирует вестибулярный аппарат — система мешочков и полукружных каналов во внутреннем ухе. Но в невесомости он работает со сбоями, так как для его работы необходима сила тяжести. Поэтому космонавты нередко испытывают головокружение и дезориентацию до тех пор, пока их тело не привыкнет к необычным условиям.

Выяснилось, что у космонавтов перестраиваются связи мозга, отвечающие за восприятие и движение. Чтобы компенсировать недостаток информации от органа равновесия, развивается вспомогательная система соматосенсорного контроля: мозг чаще обращается к зрительным и тактильным системам, чем к вестибулярному аппарату. Поэтому усиливаются нейронные пути, координирующие их работу. Так, фМРТ показало увеличение связи островковых долей с другими отделами. Островковые доли отвечают за интеграцию ощущений, поступающих из разных систем.

Что же касается связей мозжечка и вестибулярных ядер с полушариями, — в условиях земного притяжения эти структуры обеспечивают обработку ощущений, поступающих из вестибулярного аппарата. Ученые предполагают, что в космосе мозг тормозит активность этой системы, так как от нее поступает противоречивая информация об окружающем мире.

Это не первая попытка изучить влияние невесомости на мозг с помощью нейровизуализации. Более ранние исследования посвящены рискам для здоровья, с которыми сталкиваются космонавты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector